Micro- and nano-environment dual-modulated anti-tendon adhesion barrier membranes

材料科学 粘附 基因沉默 明胶 纳米技术 基因传递 细胞外基质 肌腱 细胞粘附 生物医学工程 遗传增强 细胞生物学 化学 复合材料 生物 基因 解剖 生物化学 医学
作者
Qiang Zhang,Kui Ma,Chun-Hei Lam,Ho‐Pan Bei,Yu Liu,Xing Yang,Xin Zhao
出处
期刊:Materials & Design [Elsevier]
卷期号:219: 110737-110737 被引量:12
标识
DOI:10.1016/j.matdes.2022.110737
摘要

Despite promise in preventing peritendinous adhesion, electrospun membranes face many challenges related to their complex fabrication process, untargeted/uncontrolled drug delivery and consequently low therapeutical effect. Here, a micro-and nano-environment dual-modulated barrier membrane (MNBM) with on-demand gene delivery capability is presented. Our MNBM is developed by first preparing extracellular signal-regulated kinase-2 (ERK2) siRNA-loaded gelatin methacryloyl (GelMA) nanogels via facile nano-emulsification technique, then incorporating these nanogels into poly-L-lactic acid (PLLA) fibers via simple blending electrospinning. The GelMA nanogels offer a nano-niche for ERK2-siRNA encapsulation and allow for a nano-environment controlled siRNA release by readily tuning the GelMA concentrations during nano-emulsification, while the resultant MNBM can mediate a micro-environment controlled siRNA delivery in response to the matrix metalloproteinase-2 (MMP-2) enriched micro-environment at the tendon repair site. Such MNBM can not only biologically orchestrate fibroblast behaviors by silencing the target gene expression, but also physically shield the tendon from extrinsic cell/tissue invasion. This study provides a proof-of-concept of anti-adhesion barrier membrane as an intelligent gene delivery system to offer a spatiotemporal and biophysical dual control over tendon recovery according to disease state and ensure long-term therapeutic efficacy. We envision such MNBM represents a promising therapeutic platform with great efficacy to achieve adhesion-free tendon repair.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助可爱半凡采纳,获得10
1秒前
lu完成签到,获得积分10
1秒前
2秒前
zzzkyt发布了新的文献求助10
2秒前
wanggongxiu发布了新的文献求助10
3秒前
4秒前
Yi完成签到 ,获得积分10
4秒前
yvonne3399应助机灵夜云采纳,获得30
5秒前
5秒前
6秒前
莓啤汽发布了新的文献求助10
7秒前
7秒前
黑章鱼保罗完成签到,获得积分10
8秒前
10秒前
kk发布了新的文献求助10
11秒前
小马甲应助大意的醉山采纳,获得10
11秒前
邓佳鑫Alan应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
邓佳鑫Alan应助科研通管家采纳,获得10
11秒前
邓佳鑫Alan应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
彩色的云完成签到 ,获得积分10
12秒前
邓佳鑫Alan应助科研通管家采纳,获得10
12秒前
邓佳鑫Alan应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
李飞客发布了新的文献求助10
12秒前
今后应助科研通管家采纳,获得10
12秒前
在水一方应助明理半双采纳,获得10
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
13秒前
期望应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
邓佳鑫Alan应助科研通管家采纳,获得10
13秒前
13秒前
田様应助科研通管家采纳,获得30
13秒前
13秒前
大模型应助科研通管家采纳,获得10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310354
求助须知:如何正确求助?哪些是违规求助? 2943290
关于积分的说明 8513642
捐赠科研通 2618527
什么是DOI,文献DOI怎么找? 1431125
科研通“疑难数据库(出版商)”最低求助积分说明 664383
邀请新用户注册赠送积分活动 649580