Diagnosis of Parkinson's disease based on SHAP value feature selection

特征选择 随机森林 人工智能 模式识别(心理学) 分类器(UML) Boosting(机器学习) 计算机科学 特征(语言学) 梯度升压 机器学习 语言学 哲学
作者
Yuchun Liu,Zhihui Liu,Xue Luo,Hongjingtian Zhao
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier BV]
卷期号:42 (3): 856-869 被引量:131
标识
DOI:10.1016/j.bbe.2022.06.007
摘要

To address the problem of high feature dimensionality of Parkinson's disease medical data, this paper introduces SHapley Additive exPlanations (SHAP) value for feature selection of Parkinson's disease medical dataset. This paper combines SHAP value with four classifiers, namely deep forest (gcForest), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM) and random forest (RF), respectively. Then this paper applies them to Parkinson's disease diagnosis. First, the classifier is used to calculate the magnitude of contribution of SHAP value to the features, then the features with significant contribution in the classification task are selected, and then the data after feature selection is used as input to classify the Parkinson's disease dataset for diagnosis using the classifier. The experimental results show that compared to Fscore, analysis of variance (Anova-F) and mutual information (MI) feature selection methods, the four models based on SHAP-value feature selection achieved good classification results. The SHAP-gcForest model combined with gcForest achieves classification accuracy of 91.78% and F1-score of 0.945 when 150 features are selected. The SHAP-LightGBM model combined with LightGBM achieves classification accuracy and F1-score of 91.62% and 0.945 when 50 features are selected, respectively. The classification effectiveness is second only to the SHAP-gcForest model, but the SHAP-LightGBM model is more computationally efficient than the SHAP-gcForest model. Finally, the effectiveness of the proposed method is verified by comparing it with the results of existing literature. The findings demonstrate that machine learning with SHAP value feature selection method has good classification performance in the diagnosis of Parkinson's disease, and provides a reference for physicians in the diagnosis and prevention of Parkinson's disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王橙子发布了新的文献求助10
刚刚
稳稳完成签到,获得积分10
刚刚
changping发布了新的文献求助50
1秒前
深情安青应助三土采纳,获得10
1秒前
szy991101发布了新的文献求助10
1秒前
1秒前
Sean完成签到,获得积分10
1秒前
1秒前
吊炸天完成签到 ,获得积分10
1秒前
okkk完成签到,获得积分10
1秒前
张天发布了新的文献求助10
2秒前
咚咚发布了新的文献求助10
2秒前
2秒前
3秒前
FB完成签到,获得积分10
3秒前
xiaohanzai88完成签到,获得积分10
3秒前
桐桐应助彭薇颖采纳,获得10
3秒前
稳稳发布了新的文献求助10
3秒前
可以完成签到,获得积分10
4秒前
4秒前
5秒前
赘婿应助Tan采纳,获得10
5秒前
5秒前
6秒前
Cynthia发布了新的文献求助10
7秒前
Fliu发布了新的文献求助10
7秒前
bkagyin应助宝宝巴士驾驶员采纳,获得10
7秒前
7秒前
7秒前
科研通AI5应助尊敬谷波采纳,获得10
7秒前
852应助典雅的俊驰采纳,获得10
8秒前
8秒前
8秒前
我是老大应助友好的储采纳,获得10
8秒前
jack发布了新的文献求助10
9秒前
研友_VZG7GZ应助xiaowei采纳,获得10
9秒前
天天快乐应助孤独的访旋采纳,获得10
10秒前
wyy发布了新的文献求助10
10秒前
whatever应助guozizi采纳,获得50
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193007
求助须知:如何正确求助?哪些是违规求助? 4375799
关于积分的说明 13626640
捐赠科研通 4230400
什么是DOI,文献DOI怎么找? 2320393
邀请新用户注册赠送积分活动 1318798
关于科研通互助平台的介绍 1269105