亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diagnosis of Parkinson's disease based on SHAP value feature selection

特征选择 随机森林 人工智能 模式识别(心理学) 分类器(UML) Boosting(机器学习) 计算机科学 特征(语言学) 梯度升压 机器学习 语言学 哲学
作者
Yuchun Liu,Zhihui Liu,Xue Luo,Hongjingtian Zhao
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier]
卷期号:42 (3): 856-869 被引量:71
标识
DOI:10.1016/j.bbe.2022.06.007
摘要

To address the problem of high feature dimensionality of Parkinson's disease medical data, this paper introduces SHapley Additive exPlanations (SHAP) value for feature selection of Parkinson's disease medical dataset. This paper combines SHAP value with four classifiers, namely deep forest (gcForest), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM) and random forest (RF), respectively. Then this paper applies them to Parkinson's disease diagnosis. First, the classifier is used to calculate the magnitude of contribution of SHAP value to the features, then the features with significant contribution in the classification task are selected, and then the data after feature selection is used as input to classify the Parkinson's disease dataset for diagnosis using the classifier. The experimental results show that compared to Fscore, analysis of variance (Anova-F) and mutual information (MI) feature selection methods, the four models based on SHAP-value feature selection achieved good classification results. The SHAP-gcForest model combined with gcForest achieves classification accuracy of 91.78% and F1-score of 0.945 when 150 features are selected. The SHAP-LightGBM model combined with LightGBM achieves classification accuracy and F1-score of 91.62% and 0.945 when 50 features are selected, respectively. The classification effectiveness is second only to the SHAP-gcForest model, but the SHAP-LightGBM model is more computationally efficient than the SHAP-gcForest model. Finally, the effectiveness of the proposed method is verified by comparing it with the results of existing literature. The findings demonstrate that machine learning with SHAP value feature selection method has good classification performance in the diagnosis of Parkinson's disease, and provides a reference for physicians in the diagnosis and prevention of Parkinson's disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
bryceeluo发布了新的文献求助10
4秒前
安详向薇完成签到,获得积分10
6秒前
璨澄完成签到 ,获得积分10
9秒前
10秒前
科研通AI2S应助青葱年华rr采纳,获得10
15秒前
15秒前
忧郁的寻冬完成签到,获得积分10
17秒前
18秒前
清爽老九应助alpv采纳,获得10
21秒前
shy发布了新的文献求助10
21秒前
22秒前
Xm发布了新的文献求助10
23秒前
开心岩发布了新的文献求助10
25秒前
开心岩完成签到,获得积分10
31秒前
科研通AI2S应助shy采纳,获得10
36秒前
拉长的元芹应助caster1采纳,获得10
37秒前
奈思完成签到 ,获得积分10
38秒前
乐乐应助负责丹亦采纳,获得10
46秒前
zjspidany应助caster1采纳,获得10
50秒前
52秒前
佳佳发布了新的文献求助30
56秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
科研狗发布了新的文献求助10
1分钟前
FashionBoy应助zhuhan采纳,获得10
1分钟前
1分钟前
1分钟前
告非Goffee发布了新的文献求助10
1分钟前
111完成签到 ,获得积分10
1分钟前
Yuying完成签到 ,获得积分10
1分钟前
告非Goffee完成签到,获得积分10
1分钟前
2分钟前
2分钟前
zhuhan发布了新的文献求助10
2分钟前
liuerlong完成签到 ,获得积分10
2分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314374
求助须知:如何正确求助?哪些是违规求助? 2946617
关于积分的说明 8531095
捐赠科研通 2622350
什么是DOI,文献DOI怎么找? 1434478
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650855