Diagnosis of Parkinson's disease based on SHAP value feature selection

特征选择 随机森林 人工智能 模式识别(心理学) 分类器(UML) Boosting(机器学习) 计算机科学 特征(语言学) 梯度升压 机器学习 语言学 哲学
作者
Yuchun Liu,Zhihui Liu,Xue Luo,Hongjingtian Zhao
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier]
卷期号:42 (3): 856-869 被引量:131
标识
DOI:10.1016/j.bbe.2022.06.007
摘要

To address the problem of high feature dimensionality of Parkinson's disease medical data, this paper introduces SHapley Additive exPlanations (SHAP) value for feature selection of Parkinson's disease medical dataset. This paper combines SHAP value with four classifiers, namely deep forest (gcForest), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM) and random forest (RF), respectively. Then this paper applies them to Parkinson's disease diagnosis. First, the classifier is used to calculate the magnitude of contribution of SHAP value to the features, then the features with significant contribution in the classification task are selected, and then the data after feature selection is used as input to classify the Parkinson's disease dataset for diagnosis using the classifier. The experimental results show that compared to Fscore, analysis of variance (Anova-F) and mutual information (MI) feature selection methods, the four models based on SHAP-value feature selection achieved good classification results. The SHAP-gcForest model combined with gcForest achieves classification accuracy of 91.78% and F1-score of 0.945 when 150 features are selected. The SHAP-LightGBM model combined with LightGBM achieves classification accuracy and F1-score of 91.62% and 0.945 when 50 features are selected, respectively. The classification effectiveness is second only to the SHAP-gcForest model, but the SHAP-LightGBM model is more computationally efficient than the SHAP-gcForest model. Finally, the effectiveness of the proposed method is verified by comparing it with the results of existing literature. The findings demonstrate that machine learning with SHAP value feature selection method has good classification performance in the diagnosis of Parkinson's disease, and provides a reference for physicians in the diagnosis and prevention of Parkinson's disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小景007完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
asdfqwer发布了新的文献求助10
1秒前
1秒前
史超完成签到,获得积分10
1秒前
1秒前
xy发布了新的文献求助10
1秒前
闾丘翠琴完成签到,获得积分10
1秒前
cct完成签到 ,获得积分10
2秒前
orixero应助木子与草头靁采纳,获得30
2秒前
诚心的绮梅完成签到,获得积分10
2秒前
SciGPT应助hhh采纳,获得10
2秒前
2秒前
2秒前
犹豫水池发布了新的文献求助20
2秒前
乔凌云完成签到 ,获得积分10
2秒前
贪玩菲音发布了新的文献求助10
2秒前
眯眯眼的冷珍完成签到,获得积分10
4秒前
科研通AI2S应助拉长的念露采纳,获得10
5秒前
星辰大海应助Queena采纳,获得10
5秒前
5秒前
云帆SaMa发布了新的文献求助10
5秒前
粱若之发布了新的文献求助10
6秒前
6秒前
wei发布了新的文献求助10
6秒前
Huanying发布了新的文献求助10
6秒前
7秒前
jieni完成签到,获得积分10
7秒前
浮游应助俏皮的老城采纳,获得10
8秒前
wx发布了新的文献求助10
8秒前
8秒前
省委一把手完成签到,获得积分10
8秒前
闪闪寻冬发布了新的文献求助10
8秒前
popeye007完成签到 ,获得积分10
8秒前
健忘蘑菇完成签到,获得积分10
9秒前
9秒前
9秒前
桐桐应助ShengzhangLiu采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439360
求助须知:如何正确求助?哪些是违规求助? 4550482
关于积分的说明 14224867
捐赠科研通 4471458
什么是DOI,文献DOI怎么找? 2450361
邀请新用户注册赠送积分活动 1441216
关于科研通互助平台的介绍 1417865