Diagnosis of Parkinson's disease based on SHAP value feature selection

特征选择 随机森林 人工智能 模式识别(心理学) 分类器(UML) Boosting(机器学习) 计算机科学 特征(语言学) 梯度升压 机器学习 语言学 哲学
作者
Yuchun Liu,Zhihui Liu,Xue Luo,Hongjingtian Zhao
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier BV]
卷期号:42 (3): 856-869 被引量:105
标识
DOI:10.1016/j.bbe.2022.06.007
摘要

To address the problem of high feature dimensionality of Parkinson's disease medical data, this paper introduces SHapley Additive exPlanations (SHAP) value for feature selection of Parkinson's disease medical dataset. This paper combines SHAP value with four classifiers, namely deep forest (gcForest), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM) and random forest (RF), respectively. Then this paper applies them to Parkinson's disease diagnosis. First, the classifier is used to calculate the magnitude of contribution of SHAP value to the features, then the features with significant contribution in the classification task are selected, and then the data after feature selection is used as input to classify the Parkinson's disease dataset for diagnosis using the classifier. The experimental results show that compared to Fscore, analysis of variance (Anova-F) and mutual information (MI) feature selection methods, the four models based on SHAP-value feature selection achieved good classification results. The SHAP-gcForest model combined with gcForest achieves classification accuracy of 91.78% and F1-score of 0.945 when 150 features are selected. The SHAP-LightGBM model combined with LightGBM achieves classification accuracy and F1-score of 91.62% and 0.945 when 50 features are selected, respectively. The classification effectiveness is second only to the SHAP-gcForest model, but the SHAP-LightGBM model is more computationally efficient than the SHAP-gcForest model. Finally, the effectiveness of the proposed method is verified by comparing it with the results of existing literature. The findings demonstrate that machine learning with SHAP value feature selection method has good classification performance in the diagnosis of Parkinson's disease, and provides a reference for physicians in the diagnosis and prevention of Parkinson's disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jiujiu发布了新的文献求助30
刚刚
刚刚
zzz发布了新的文献求助30
1秒前
1秒前
JamesPei应助徒弟的师傅采纳,获得10
3秒前
zsgot3发布了新的文献求助10
4秒前
科研通AI6应助展博采纳,获得10
4秒前
4秒前
共享精神应助工藤新一采纳,获得10
4秒前
xiaoxiao1992发布了新的文献求助10
4秒前
等等有力气完成签到,获得积分10
5秒前
5秒前
Orange应助蒋一采纳,获得10
6秒前
6秒前
6秒前
大方芾完成签到,获得积分10
7秒前
7秒前
科研通AI6应助Shahid采纳,获得10
7秒前
8秒前
9秒前
Gaberil发布了新的文献求助10
9秒前
9秒前
9秒前
阿晴完成签到,获得积分10
10秒前
ecrrry完成签到 ,获得积分10
10秒前
11秒前
美好幻灵发布了新的文献求助10
11秒前
11秒前
11秒前
碧松桥完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
呆毛王发布了新的文献求助10
12秒前
仰望星空应助xiaoxiao1992采纳,获得10
12秒前
一群牛发布了新的文献求助10
13秒前
XRWei发布了新的文献求助10
13秒前
科研通AI6应助Wangxuexin采纳,获得10
13秒前
阿晴发布了新的文献求助10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403