Diagnosis of Parkinson's disease based on SHAP value feature selection

特征选择 随机森林 人工智能 模式识别(心理学) 分类器(UML) Boosting(机器学习) 计算机科学 特征(语言学) 梯度升压 机器学习 语言学 哲学
作者
Yuchun Liu,Zhihui Liu,Xue Luo,Hongjingtian Zhao
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier]
卷期号:42 (3): 856-869 被引量:134
标识
DOI:10.1016/j.bbe.2022.06.007
摘要

To address the problem of high feature dimensionality of Parkinson's disease medical data, this paper introduces SHapley Additive exPlanations (SHAP) value for feature selection of Parkinson's disease medical dataset. This paper combines SHAP value with four classifiers, namely deep forest (gcForest), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM) and random forest (RF), respectively. Then this paper applies them to Parkinson's disease diagnosis. First, the classifier is used to calculate the magnitude of contribution of SHAP value to the features, then the features with significant contribution in the classification task are selected, and then the data after feature selection is used as input to classify the Parkinson's disease dataset for diagnosis using the classifier. The experimental results show that compared to Fscore, analysis of variance (Anova-F) and mutual information (MI) feature selection methods, the four models based on SHAP-value feature selection achieved good classification results. The SHAP-gcForest model combined with gcForest achieves classification accuracy of 91.78% and F1-score of 0.945 when 150 features are selected. The SHAP-LightGBM model combined with LightGBM achieves classification accuracy and F1-score of 91.62% and 0.945 when 50 features are selected, respectively. The classification effectiveness is second only to the SHAP-gcForest model, but the SHAP-LightGBM model is more computationally efficient than the SHAP-gcForest model. Finally, the effectiveness of the proposed method is verified by comparing it with the results of existing literature. The findings demonstrate that machine learning with SHAP value feature selection method has good classification performance in the diagnosis of Parkinson's disease, and provides a reference for physicians in the diagnosis and prevention of Parkinson's disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
刚刚
无极微光应助gjl采纳,获得20
1秒前
Mortimer发布了新的文献求助10
1秒前
善学以致用应助科研采纳,获得10
3秒前
iiing完成签到,获得积分10
3秒前
5秒前
Mae发布了新的文献求助30
5秒前
小胖wwwww完成签到 ,获得积分10
5秒前
夏夜完成签到 ,获得积分10
5秒前
坚强觅珍完成签到 ,获得积分10
5秒前
6秒前
机智的邪欢完成签到,获得积分10
6秒前
7秒前
Ay关注了科研通微信公众号
7秒前
陈陈陈给Yishai_Song的求助进行了留言
8秒前
阿星捌完成签到 ,获得积分10
8秒前
复杂斓完成签到 ,获得积分10
10秒前
yawen19922发布了新的文献求助10
10秒前
10秒前
我是老大应助卢兰兰采纳,获得10
10秒前
如意的新蕾完成签到 ,获得积分10
12秒前
韩恩轩发布了新的文献求助10
12秒前
中论文呢发布了新的文献求助10
12秒前
兰先生发布了新的文献求助10
12秒前
华仔应助hey采纳,获得10
13秒前
13秒前
14秒前
15秒前
知识混子发布了新的文献求助10
16秒前
空古悠浪发布了新的文献求助10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
ccm应助科研通管家采纳,获得10
19秒前
孟器应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
19秒前
fei应助科研通管家采纳,获得10
19秒前
ccm应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499066
求助须知:如何正确求助?哪些是违规求助? 4596051
关于积分的说明 14451981
捐赠科研通 4529162
什么是DOI,文献DOI怎么找? 2481834
邀请新用户注册赠送积分活动 1465842
关于科研通互助平台的介绍 1438777