Diagnosis of Parkinson's disease based on SHAP value feature selection

特征选择 随机森林 人工智能 模式识别(心理学) 分类器(UML) Boosting(机器学习) 计算机科学 特征(语言学) 梯度升压 机器学习 语言学 哲学
作者
Yuchun Liu,Zhihui Liu,Xue Luo,Hongjingtian Zhao
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier]
卷期号:42 (3): 856-869 被引量:131
标识
DOI:10.1016/j.bbe.2022.06.007
摘要

To address the problem of high feature dimensionality of Parkinson's disease medical data, this paper introduces SHapley Additive exPlanations (SHAP) value for feature selection of Parkinson's disease medical dataset. This paper combines SHAP value with four classifiers, namely deep forest (gcForest), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM) and random forest (RF), respectively. Then this paper applies them to Parkinson's disease diagnosis. First, the classifier is used to calculate the magnitude of contribution of SHAP value to the features, then the features with significant contribution in the classification task are selected, and then the data after feature selection is used as input to classify the Parkinson's disease dataset for diagnosis using the classifier. The experimental results show that compared to Fscore, analysis of variance (Anova-F) and mutual information (MI) feature selection methods, the four models based on SHAP-value feature selection achieved good classification results. The SHAP-gcForest model combined with gcForest achieves classification accuracy of 91.78% and F1-score of 0.945 when 150 features are selected. The SHAP-LightGBM model combined with LightGBM achieves classification accuracy and F1-score of 91.62% and 0.945 when 50 features are selected, respectively. The classification effectiveness is second only to the SHAP-gcForest model, but the SHAP-LightGBM model is more computationally efficient than the SHAP-gcForest model. Finally, the effectiveness of the proposed method is verified by comparing it with the results of existing literature. The findings demonstrate that machine learning with SHAP value feature selection method has good classification performance in the diagnosis of Parkinson's disease, and provides a reference for physicians in the diagnosis and prevention of Parkinson's disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fernweh发布了新的文献求助10
刚刚
852应助Moro采纳,获得10
刚刚
1秒前
laryc发布了新的文献求助10
1秒前
真三完成签到,获得积分10
1秒前
1秒前
1秒前
852应助lycoris采纳,获得10
2秒前
星辰大海应助温婉采纳,获得10
2秒前
3秒前
科目三应助222333采纳,获得10
3秒前
绝望的文盲关注了科研通微信公众号
3秒前
喜欢月亮魔法师完成签到,获得积分10
4秒前
wanci应助如意的雨琴采纳,获得10
4秒前
4秒前
if发布了新的文献求助10
5秒前
柒景景完成签到,获得积分10
5秒前
6秒前
时钟完成签到,获得积分20
6秒前
TEDDY发布了新的文献求助10
6秒前
heye完成签到,获得积分20
6秒前
鱼鱼鱼完成签到,获得积分10
6秒前
憨憨发布了新的文献求助10
6秒前
Mimi发布了新的文献求助10
6秒前
7秒前
核桃发布了新的文献求助10
7秒前
8秒前
8秒前
饲养员发布了新的文献求助10
8秒前
9秒前
9秒前
水水应助天蓝日月潭采纳,获得20
9秒前
今后应助Wangjj采纳,获得30
9秒前
luo完成签到,获得积分10
10秒前
莫咏怡发布了新的文献求助10
11秒前
乐乐应助Corn_Dog采纳,获得10
11秒前
鱼鱼鱼发布了新的文献求助10
11秒前
隐形曼青应助网上飞采纳,获得10
11秒前
11秒前
科研通AI6应助kjwu采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728