Diagnosis of Parkinson's disease based on SHAP value feature selection

特征选择 随机森林 人工智能 模式识别(心理学) 分类器(UML) Boosting(机器学习) 计算机科学 特征(语言学) 梯度升压 机器学习 语言学 哲学
作者
Yuchun Liu,Zhihui Liu,Xue Luo,Hongjingtian Zhao
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier]
卷期号:42 (3): 856-869 被引量:131
标识
DOI:10.1016/j.bbe.2022.06.007
摘要

To address the problem of high feature dimensionality of Parkinson's disease medical data, this paper introduces SHapley Additive exPlanations (SHAP) value for feature selection of Parkinson's disease medical dataset. This paper combines SHAP value with four classifiers, namely deep forest (gcForest), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM) and random forest (RF), respectively. Then this paper applies them to Parkinson's disease diagnosis. First, the classifier is used to calculate the magnitude of contribution of SHAP value to the features, then the features with significant contribution in the classification task are selected, and then the data after feature selection is used as input to classify the Parkinson's disease dataset for diagnosis using the classifier. The experimental results show that compared to Fscore, analysis of variance (Anova-F) and mutual information (MI) feature selection methods, the four models based on SHAP-value feature selection achieved good classification results. The SHAP-gcForest model combined with gcForest achieves classification accuracy of 91.78% and F1-score of 0.945 when 150 features are selected. The SHAP-LightGBM model combined with LightGBM achieves classification accuracy and F1-score of 91.62% and 0.945 when 50 features are selected, respectively. The classification effectiveness is second only to the SHAP-gcForest model, but the SHAP-LightGBM model is more computationally efficient than the SHAP-gcForest model. Finally, the effectiveness of the proposed method is verified by comparing it with the results of existing literature. The findings demonstrate that machine learning with SHAP value feature selection method has good classification performance in the diagnosis of Parkinson's disease, and provides a reference for physicians in the diagnosis and prevention of Parkinson's disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zkqzzz完成签到 ,获得积分10
2秒前
谢青完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
充电宝应助聪明的孩子采纳,获得10
3秒前
琦琦完成签到,获得积分10
5秒前
小蘑菇应助四体不勤采纳,获得10
5秒前
Yu发布了新的文献求助10
5秒前
风趣青槐完成签到,获得积分10
5秒前
Luo完成签到,获得积分10
6秒前
任性子骞应助1101592875采纳,获得10
8秒前
sss发布了新的文献求助10
8秒前
8秒前
xgx984发布了新的文献求助10
8秒前
8秒前
9秒前
科研通AI6应助老默采纳,获得10
10秒前
patience发布了新的文献求助10
11秒前
善学以致用应助ShawnJohn采纳,获得10
13秒前
聪明的孩子完成签到,获得积分10
13秒前
明亮元柏发布了新的文献求助10
14秒前
15秒前
积木123完成签到,获得积分10
17秒前
17秒前
四体不勤发布了新的文献求助10
19秒前
wanci应助辞稚采纳,获得10
21秒前
ste发布了新的文献求助10
22秒前
22秒前
23秒前
科研通AI2S应助牛初辰采纳,获得10
24秒前
12发布了新的文献求助20
24秒前
25秒前
Nico发布了新的文献求助10
25秒前
25秒前
26秒前
拼搏从凝发布了新的文献求助10
27秒前
28秒前
ShawnJohn发布了新的文献求助10
28秒前
羊羊羊完成签到,获得积分10
28秒前
29秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457225
求助须知:如何正确求助?哪些是违规求助? 4563754
关于积分的说明 14291028
捐赠科研通 4488333
什么是DOI,文献DOI怎么找? 2458445
邀请新用户注册赠送积分活动 1448564
关于科研通互助平台的介绍 1424214