Statistical relationships between numerous retired lithium-ion cells and packs with random sampling for echelon utilization

电池组 过程(计算) 采样(信号处理) 工程类 能量(信号处理) 储能 系列(地层学) 可靠性工程 统计 计算机科学 电气工程 数学 电池(电) 功率(物理) 物理 操作系统 滤波器(信号处理) 古生物学 生物 量子力学
作者
Chen Ma,Long Chang,Naxin Cui,Bin Duan,Yulong Zhang,Zhihao Yu
出处
期刊:Energy [Elsevier]
卷期号:257: 124692-124692 被引量:9
标识
DOI:10.1016/j.energy.2022.124692
摘要

Retired batteries are widely repurposed in energy storage packs as an economical and eco-friendly method to achieve echelon utilization. However, pack performance is strongly affected by variations in retired cells and pack configuration. Quantifying this effect in various pack configurations considering cell-to-cell variations is crucial for predicting the performance of numerous packs. Therefore, under a random sampling scenario, we developed statistical models of relationships between retired cells and packs in terms of capacity and resistance based on probability and statistics, thereby providing a solid theoretical foundation for designing and optimizing the pack structure. It is proven that parallel configuration improves the utilization efficiency and variation of pack-level capacities. Meanwhile, both parallel and series configurations reduce the pack-level resistance variation. Moreover, the statistical capacity performance of packs with parallel connections in series is superior to that of packs with series connections in parallel, although their statistical resistance characteristics are the same. Furthermore, based on the developed models, a capacity screening criterion is proposed that retired cells with a capacity greater than μC-2σC should be accepted in screening process to randomly compose energy storage packs, thereby reducing the capacity variation of packs while making full use of retired cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
2秒前
严好香完成签到 ,获得积分10
2秒前
2秒前
3秒前
长度2到发布了新的文献求助10
4秒前
4秒前
hyman1218发布了新的文献求助50
4秒前
君子扑火完成签到,获得积分10
4秒前
淡定的勒完成签到,获得积分10
5秒前
5秒前
浅笑_随风发布了新的文献求助10
5秒前
yinzenglinnn发布了新的文献求助10
5秒前
5秒前
zhangguo发布了新的文献求助100
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
李健应助完美平灵采纳,获得10
6秒前
6秒前
6秒前
打打应助konoraha采纳,获得10
6秒前
neufy发布了新的文献求助10
6秒前
nighwalk发布了新的文献求助10
7秒前
豌豆射手发布了新的文献求助10
7秒前
7秒前
8秒前
caocao发布了新的文献求助10
8秒前
孤独的远山完成签到,获得积分10
8秒前
缓慢千易完成签到 ,获得积分10
9秒前
rabpig完成签到,获得积分10
9秒前
畅快的寻凝完成签到,获得积分10
9秒前
今后应助third采纳,获得10
9秒前
无期发布了新的文献求助10
9秒前
mookie发布了新的文献求助10
10秒前
次我完成签到,获得积分10
10秒前
顾矜应助dyd采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515