生物
转座因子
基因组
转座酶
模式生物
计算生物学
细菌基因组大小
清脆的
遗传学
基因组编辑
背景(考古学)
微生物遗传学
有机体
基因
基因组
古生物学
作者
Benjamin E. Rubin,Spencer Diamond,Brady F. Cress,Alexander Crits‐Christoph,Yue Clare Lou,Adair L. Borges,Haridha Shivram,Christine He,Michael Xu,Zeyi Zhou,Sara J. Smith,Rachel Rovinsky,Dylan C. J. Smock,Kimberly Tang,Trenton K. Owens,Netravathi Krishnappa,Rohan Sachdeva,Rodolphe Barrangou,Adam M. Deutschbauer,Jillian F. Banfield,Jennifer A. Doudna
出处
期刊:Nature microbiology
日期:2021-12-06
卷期号:7 (1): 34-47
被引量:158
标识
DOI:10.1038/s41564-021-01014-7
摘要
Understanding microbial gene functions relies on the application of experimental genetics in cultured microorganisms. However, the vast majority of bacteria and archaea remain uncultured, precluding the application of traditional genetic methods to these organisms and their interactions. Here, we characterize and validate a generalizable strategy for editing the genomes of specific organisms in microbial communities. We apply environmental transformation sequencing (ET-seq), in which nontargeted transposon insertions are mapped and quantified following delivery to a microbial community, to identify genetically tractable constituents. Next, DNA-editing all-in-one RNA-guided CRISPR–Cas transposase (DART) systems for targeted DNA insertion into organisms identified as tractable by ET-seq are used to enable organism- and locus-specific genetic manipulation in a community context. Using a combination of ET-seq and DART in soil and infant gut microbiota, we conduct species- and site-specific edits in several bacteria, measure gene fitness in a nonmodel bacterium and enrich targeted species. These tools enable editing of microbial communities for understanding and control. A suite of methods enables programmable species- and locus-specific editing of bacteria in communities.
科研通智能强力驱动
Strongly Powered by AbleSci AI