Predicting miRNA-disease associations based on graph attention networks and dual Laplacian regularized least squares

疾病 拉普拉斯矩阵 计算机科学 核(代数) 图形 小RNA 高斯分布 机器学习 人工智能 计算生物学 医学 理论计算机科学 数学 生物 遗传学 物理 病理 组合数学 基因 量子力学
作者
Wengang Wang,Hailin Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:4
标识
DOI:10.1093/bib/bbac292
摘要

Increasing biomedical evidence has proved that the dysregulation of miRNAs is associated with human complex diseases. Identification of disease-related miRNAs is of great importance for disease prevention, diagnosis and remedy. To reduce the time and cost of biomedical experiments, there is a strong incentive to develop efficient computational methods to infer potential miRNA-disease associations. Although many computational approaches have been proposed to address this issue, the prediction accuracy needs to be further improved. In this study, we present a computational framework MKGAT to predict possible associations between miRNAs and diseases through graph attention networks (GATs) using dual Laplacian regularized least squares. We use GATs to learn embeddings of miRNAs and diseases on each layer from initial input features of known miRNA-disease associations, intra-miRNA similarities and intra-disease similarities. We then calculate kernel matrices of miRNAs and diseases based on Gaussian interaction profile (GIP) with the learned embeddings. We further fuse the kernel matrices of each layer and initial similarities with attention mechanism. Dual Laplacian regularized least squares are finally applied for new miRNA-disease association predictions with the fused miRNA and disease kernels. Compared with six state-of-the-art methods by 5-fold cross-validations, our method MKGAT receives the highest AUROC value of 0.9627 and AUPR value of 0.7372. We use MKGAT to predict related miRNAs for three cancers and discover that all the top 50 predicted results in the three diseases are confirmed by existing databases. The excellent performance indicates that MKGAT would be a useful computational tool for revealing disease-related miRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gergeo完成签到,获得积分0
1秒前
Kimi完成签到,获得积分10
1秒前
赵晓刚完成签到 ,获得积分10
1秒前
1秒前
2秒前
Yziii发布了新的文献求助10
3秒前
3秒前
星期一发布了新的文献求助30
4秒前
端庄的钢铁侠完成签到,获得积分10
4秒前
emma应助深海采纳,获得10
5秒前
5秒前
5秒前
7秒前
7秒前
8秒前
zhangwei应助ning采纳,获得10
8秒前
8秒前
脑洞疼应助狗十七采纳,获得10
8秒前
8秒前
听话的蜡烛完成签到,获得积分10
10秒前
10秒前
青与绿完成签到,获得积分10
10秒前
11秒前
11秒前
orixero应助1+1采纳,获得10
11秒前
陶醉的远山完成签到,获得积分10
12秒前
12秒前
WYL发布了新的文献求助30
13秒前
13秒前
14秒前
传统的白山完成签到,获得积分20
16秒前
16秒前
16秒前
崔乞完成签到,获得积分10
17秒前
酷炫的靖仇完成签到,获得积分20
18秒前
zhangxiao发布了新的文献求助10
19秒前
科研小白完成签到 ,获得积分10
19秒前
Sun1c7发布了新的文献求助10
19秒前
19秒前
19秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147888
求助须知:如何正确求助?哪些是违规求助? 2798879
关于积分的说明 7832212
捐赠科研通 2455931
什么是DOI,文献DOI怎么找? 1307018
科研通“疑难数据库(出版商)”最低求助积分说明 627959
版权声明 601587