Predicting miRNA-disease associations based on graph attention networks and dual Laplacian regularized least squares

疾病 拉普拉斯矩阵 计算机科学 核(代数) 图形 小RNA 高斯分布 机器学习 人工智能 计算生物学 医学 理论计算机科学 数学 生物 遗传学 物理 病理 组合数学 基因 量子力学
作者
Wengang Wang,Hailin Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:4
标识
DOI:10.1093/bib/bbac292
摘要

Increasing biomedical evidence has proved that the dysregulation of miRNAs is associated with human complex diseases. Identification of disease-related miRNAs is of great importance for disease prevention, diagnosis and remedy. To reduce the time and cost of biomedical experiments, there is a strong incentive to develop efficient computational methods to infer potential miRNA-disease associations. Although many computational approaches have been proposed to address this issue, the prediction accuracy needs to be further improved. In this study, we present a computational framework MKGAT to predict possible associations between miRNAs and diseases through graph attention networks (GATs) using dual Laplacian regularized least squares. We use GATs to learn embeddings of miRNAs and diseases on each layer from initial input features of known miRNA-disease associations, intra-miRNA similarities and intra-disease similarities. We then calculate kernel matrices of miRNAs and diseases based on Gaussian interaction profile (GIP) with the learned embeddings. We further fuse the kernel matrices of each layer and initial similarities with attention mechanism. Dual Laplacian regularized least squares are finally applied for new miRNA-disease association predictions with the fused miRNA and disease kernels. Compared with six state-of-the-art methods by 5-fold cross-validations, our method MKGAT receives the highest AUROC value of 0.9627 and AUPR value of 0.7372. We use MKGAT to predict related miRNAs for three cancers and discover that all the top 50 predicted results in the three diseases are confirmed by existing databases. The excellent performance indicates that MKGAT would be a useful computational tool for revealing disease-related miRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助xx采纳,获得10
1秒前
大豪子发布了新的文献求助30
1秒前
李繁蕊发布了新的文献求助10
1秒前
5秒前
5秒前
5秒前
5秒前
橘柚完成签到 ,获得积分10
6秒前
zmmmm发布了新的文献求助10
6秒前
领导范儿应助温言采纳,获得10
6秒前
思源应助OvO采纳,获得10
8秒前
迷糊发布了新的文献求助30
9秒前
LY发布了新的文献求助10
10秒前
zzz完成签到,获得积分10
10秒前
KimJongUn完成签到,获得积分10
10秒前
12秒前
12秒前
zy完成签到,获得积分10
13秒前
开心果子发布了新的文献求助10
13秒前
云痴子完成签到,获得积分10
14秒前
SciGPT应助粥粥采纳,获得10
14秒前
14秒前
14秒前
15秒前
苏源完成签到,获得积分10
15秒前
wu关闭了wu文献求助
15秒前
15秒前
16秒前
16秒前
17秒前
17秒前
17秒前
Shawn完成签到,获得积分10
18秒前
yltstt完成签到,获得积分10
19秒前
李小新发布了新的文献求助10
19秒前
成梦发布了新的文献求助10
20秒前
乐乐应助xuex1采纳,获得10
20秒前
蜂鸟5156发布了新的文献求助10
20秒前
李爱国应助VDC采纳,获得10
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808