环氧树脂
材料科学
复合材料
复合数
热导率
氮化硼
硼
各向同性
热传递
热膨胀
墨水池
化学
物理
有机化学
量子力学
作者
Jianhua He,Hua Wang,Yi Gong,Xingyou Tian,Zhiliang Zhang,Jianying He
标识
DOI:10.1016/j.compositesb.2022.109662
摘要
Recently, construction of effective three-dimensional (3D) heat transfer networks inside polymer has emerged as a promising design strategy to improve the isotropic thermal conductivity for electronic packaging materials. Hexagonal boron nitride (BN) sheets are popular carriers for constructing 3D networks. But removing overheat capability of BN was greatly sacrificed due to size limitation when constructing 3D network. Herein, a novel 3D heat-transferring network, interconnected boron phosphide (BP) grains in-situ growing on Ni foam, was designed to alternate 3D BN network. An isotropic [email protected] network with high-quality and integrity was successfully fabricated by a simple high temperature treatment. The synthesized [email protected] was incorporated into epoxy resin (ER) by infiltration to fabricate composites. ER/[email protected] composite, with strong interfacial adhesion between epoxy and [email protected], achieved a high thermal conductivity of 2.01 W/(mK), which corresponded to 908.53% and 402.00% enhancement compared to pure epoxy and ER/Ni composite. The coefficient of thermal expansion (CTE) of the composite reached as low as 26.95 × 10−6/°C, much smaller than epoxy of 60.69 × 10−6/°C and ER/Ni composite of 59.42 × 10−6/°C. The designed ER/[email protected] composite has distinguished heat removal and CTE with semiconductors from traditional polymer composites containing 3D BN network. This strategy is promising to promote the development of electrical packaging materials with high isotropic thermal conductivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI