Automatic modulation classification: Cauchy-Score-function-based cyclic correlation spectrum and FC-MLP under mixed noise and fading channels

过度拟合 计算机科学 感知器 柯西分布 人工神经网络 多层感知器 衰退 稳健性(进化) 决策树 噪声功率 模式识别(心理学) 人工智能 频道(广播) 功率(物理) 数学 电信 统计 量子力学 基因 物理 生物化学 化学
作者
Shengyang Luan,Yinrui Gao,Tao Liu,Jiayuan Li,Zhaojun Zhang
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:126: 103476-103476 被引量:6
标识
DOI:10.1016/j.dsp.2022.103476
摘要

• Three Cauchy-Score-function-based concepts are proposed, and four properties are discussed with proofs. • A lightweight neural network structure, termed FC-MLP, is designed. • A novel AMC method is proposed under a dual-layer decision tree framework. • Different channel models and mixed noise are considered. • A new dataset, RDL2021.12, is generated and provided. Automatic modulation classification (AMC), also termed blind signal modulation recognition, plays a critical role in various civilian and military applications. Although existing approaches have made substantial contributions in this area, most fail to simultaneously consider mixed noise, different channel modes and low-power scenarios. In this paper, a novel cyclic correlation spectrum based on the Cauchy Score function is first proposed as the robust pattern for the outliers in the Gaussian and non-Gaussian mixed noise. Besides, its properties are studied and proved for further potential applications in wireless signal processing. Furthermore, a modified lightweight neural network, termed feature-coupling multi-layer perceptron (FC-MLP), is designed to avoid the potential risk of overfitting and meet the needs when applied in low-power chips. In addition, a novel AMC method is proposed under a dual-layer decision tree framework, and different patterns are adopted in different layers to make full use of the robustness of the proposed pattern and the information embedded in the time sequence. Meanwhile, different classifiers are also chosen according to the characteristics of the patterns. In the simulations, state-of-the-art machine learning techniques, neural networks and patterns are employed as comparison candidates to verify the superiority of the proposed pattern, the lightweight classifier and the novel AMC approach in the scenario of Rayleigh channel or Rician channel with additive mixed noise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
忧心的不言完成签到,获得积分10
刚刚
风中的碧玉完成签到,获得积分10
1秒前
阿伦艾弗森完成签到,获得积分10
2秒前
科研通AI6.1应助Eden采纳,获得10
2秒前
tuanheqi应助Nara2021采纳,获得50
3秒前
宇文宛菡发布了新的文献求助10
3秒前
刻苦的黑米完成签到,获得积分10
5秒前
5秒前
Ya完成签到 ,获得积分10
6秒前
自觉海冬完成签到,获得积分10
7秒前
搜集达人应助飘逸鑫采纳,获得10
7秒前
9秒前
窗窗窗雨完成签到,获得积分10
9秒前
上官若男应助qigu采纳,获得10
10秒前
lu完成签到 ,获得积分20
10秒前
研友_ZzrNpZ完成签到,获得积分10
10秒前
1376完成签到 ,获得积分10
11秒前
绿豆土豆红豆完成签到 ,获得积分10
11秒前
12秒前
13秒前
zhechen完成签到,获得积分10
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
JamesPei应助Yangon采纳,获得10
14秒前
花开花落花无悔完成签到 ,获得积分10
16秒前
16秒前
17秒前
JunHan完成签到,获得积分10
17秒前
lu关注了科研通微信公众号
18秒前
幽壑之潜蛟应助zhu采纳,获得30
19秒前
Rye完成签到,获得积分10
19秒前
小申发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
张鹏飞完成签到,获得积分10
21秒前
情怀应助Vivienne采纳,获得10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060