亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic modulation classification: Cauchy-Score-function-based cyclic correlation spectrum and FC-MLP under mixed noise and fading channels

过度拟合 计算机科学 感知器 柯西分布 人工神经网络 多层感知器 衰退 稳健性(进化) 决策树 噪声功率 模式识别(心理学) 人工智能 频道(广播) 功率(物理) 数学 电信 统计 量子力学 基因 物理 生物化学 化学
作者
Shengyang Luan,Yinrui Gao,Tao Liu,Jiayuan Li,Zhaojun Zhang
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:126: 103476-103476 被引量:6
标识
DOI:10.1016/j.dsp.2022.103476
摘要

• Three Cauchy-Score-function-based concepts are proposed, and four properties are discussed with proofs. • A lightweight neural network structure, termed FC-MLP, is designed. • A novel AMC method is proposed under a dual-layer decision tree framework. • Different channel models and mixed noise are considered. • A new dataset, RDL2021.12, is generated and provided. Automatic modulation classification (AMC), also termed blind signal modulation recognition, plays a critical role in various civilian and military applications. Although existing approaches have made substantial contributions in this area, most fail to simultaneously consider mixed noise, different channel modes and low-power scenarios. In this paper, a novel cyclic correlation spectrum based on the Cauchy Score function is first proposed as the robust pattern for the outliers in the Gaussian and non-Gaussian mixed noise. Besides, its properties are studied and proved for further potential applications in wireless signal processing. Furthermore, a modified lightweight neural network, termed feature-coupling multi-layer perceptron (FC-MLP), is designed to avoid the potential risk of overfitting and meet the needs when applied in low-power chips. In addition, a novel AMC method is proposed under a dual-layer decision tree framework, and different patterns are adopted in different layers to make full use of the robustness of the proposed pattern and the information embedded in the time sequence. Meanwhile, different classifiers are also chosen according to the characteristics of the patterns. In the simulations, state-of-the-art machine learning techniques, neural networks and patterns are employed as comparison candidates to verify the superiority of the proposed pattern, the lightweight classifier and the novel AMC approach in the scenario of Rayleigh channel or Rician channel with additive mixed noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
搜集达人应助舒服的觅夏采纳,获得10
21秒前
mrjohn完成签到,获得积分10
28秒前
40秒前
45秒前
HLT完成签到 ,获得积分10
1分钟前
1分钟前
聪明安白发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
模糊中正完成签到,获得积分0
2分钟前
ceeray23应助舒适的竺采纳,获得30
2分钟前
在水一方应助聪明安白采纳,获得10
2分钟前
2分钟前
mashibeo完成签到,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
33应助科研通管家采纳,获得10
4分钟前
尹静涵完成签到 ,获得积分10
5分钟前
5分钟前
那奇泡芙发布了新的文献求助10
5分钟前
小二郎应助那奇泡芙采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
感动白开水完成签到,获得积分10
6分钟前
6分钟前
6分钟前
kingqjack发布了新的文献求助10
6分钟前
纯真以松完成签到,获得积分20
9分钟前
Lucas应助luckss采纳,获得10
9分钟前
9分钟前
9分钟前
luckss发布了新的文献求助10
9分钟前
Anthocyanidin完成签到,获得积分10
9分钟前
10分钟前
Akim应助科研通管家采纳,获得10
10分钟前
CipherSage应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
顾矜应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
传奇3应助康康XY采纳,获得10
11分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445140
求助须知:如何正确求助?哪些是违规求助? 3041131
关于积分的说明 8983996
捐赠科研通 2729756
什么是DOI,文献DOI怎么找? 1497158
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689697