Automatic modulation classification: Cauchy-Score-function-based cyclic correlation spectrum and FC-MLP under mixed noise and fading channels

过度拟合 计算机科学 感知器 柯西分布 人工神经网络 多层感知器 衰退 稳健性(进化) 决策树 噪声功率 模式识别(心理学) 人工智能 频道(广播) 功率(物理) 数学 电信 统计 量子力学 基因 物理 生物化学 化学
作者
Shengyang Luan,Yinrui Gao,Tao Liu,Jiayuan Li,Zhaojun Zhang
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:126: 103476-103476 被引量:6
标识
DOI:10.1016/j.dsp.2022.103476
摘要

• Three Cauchy-Score-function-based concepts are proposed, and four properties are discussed with proofs. • A lightweight neural network structure, termed FC-MLP, is designed. • A novel AMC method is proposed under a dual-layer decision tree framework. • Different channel models and mixed noise are considered. • A new dataset, RDL2021.12, is generated and provided. Automatic modulation classification (AMC), also termed blind signal modulation recognition, plays a critical role in various civilian and military applications. Although existing approaches have made substantial contributions in this area, most fail to simultaneously consider mixed noise, different channel modes and low-power scenarios. In this paper, a novel cyclic correlation spectrum based on the Cauchy Score function is first proposed as the robust pattern for the outliers in the Gaussian and non-Gaussian mixed noise. Besides, its properties are studied and proved for further potential applications in wireless signal processing. Furthermore, a modified lightweight neural network, termed feature-coupling multi-layer perceptron (FC-MLP), is designed to avoid the potential risk of overfitting and meet the needs when applied in low-power chips. In addition, a novel AMC method is proposed under a dual-layer decision tree framework, and different patterns are adopted in different layers to make full use of the robustness of the proposed pattern and the information embedded in the time sequence. Meanwhile, different classifiers are also chosen according to the characteristics of the patterns. In the simulations, state-of-the-art machine learning techniques, neural networks and patterns are employed as comparison candidates to verify the superiority of the proposed pattern, the lightweight classifier and the novel AMC approach in the scenario of Rayleigh channel or Rician channel with additive mixed noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助啦啦啦采纳,获得10
刚刚
十年完成签到 ,获得积分10
2秒前
lalalapa666完成签到,获得积分10
2秒前
sue完成签到,获得积分10
2秒前
笑点低的泥猴桃完成签到,获得积分10
2秒前
swsx1317完成签到,获得积分10
2秒前
3秒前
自然紫山完成签到,获得积分10
3秒前
在水一方应助Wdd采纳,获得10
3秒前
yiyi完成签到,获得积分10
3秒前
火狐狸kc完成签到,获得积分10
4秒前
SwampMan完成签到 ,获得积分10
5秒前
Seiswan完成签到,获得积分10
5秒前
5秒前
研友_nPPdan完成签到,获得积分10
6秒前
陈明宇关注了科研通微信公众号
6秒前
6秒前
yanm完成签到,获得积分10
6秒前
cistronic完成签到,获得积分10
7秒前
无语的沛春完成签到,获得积分10
7秒前
老刘完成签到,获得积分10
8秒前
小橙子完成签到,获得积分10
8秒前
闪闪的发布了新的文献求助10
8秒前
chen完成签到,获得积分10
8秒前
puff完成签到,获得积分10
8秒前
9秒前
frank完成签到,获得积分10
10秒前
Yuan完成签到,获得积分10
10秒前
PG完成签到 ,获得积分10
10秒前
YRRRR完成签到 ,获得积分10
11秒前
朴素青寒发布了新的文献求助10
11秒前
Jeremy King发布了新的文献求助10
11秒前
天Q完成签到,获得积分10
11秒前
12秒前
weixin112233完成签到,获得积分10
12秒前
7777完成签到,获得积分20
13秒前
小葡萄完成签到 ,获得积分10
13秒前
13秒前
13秒前
123完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044