Operational risk analysis in business processes using decomposed fuzzy sets

悲观 计算机科学 模糊逻辑 风险分析(工程) 风险评估 模糊集 过程(计算) 运筹学 数据挖掘 人工智能 数学 业务 哲学 计算机安全 认识论 操作系统
作者
Selcuk Cebi,Fatma Kutlu Gündoğdu,Cengiz Kahraman
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (3): 2485-2502 被引量:8
标识
DOI:10.3233/jifs-213385
摘要

Risk assessment takes place depending on the expertise and subjective linguistic assessments of experts. Expert judgements are collected via a questionnaire or an interview including qualitative data. Pessimistic or optimistic status of experts can affect their perceptions on risk. Furthermore, expert judgments are affected by questions’ structure based on whether it is a positive type question (e.g., ‘What is the occurrence probability of the accident?) or a negative type question (e.g., ‘What is the non-occurrence probability of the accident?). All of these cases create uncertainties in the risk assessment process. For this reason, there are various studies using fuzzy risk analysis models to address these uncertainties in risk assessment. However, there is not any risk assessment tool that considers the uncertainties caused by the factors mentioned above, simultaneously. Therefore, in this paper, we introduce the concept of decomposed fuzzy sets (DFS) to model human thoughts and perceptions in a more realistic and detailed way through optimistic and pessimistic membership functions. We present the basic operations on decomposed fuzzy sets and their properties. To demonstrate the utility of the proposed method, the method is applied to operational risk analysis in business processes. The data used in the application are collected from the managerial board of a construction company. The application results and advantages of the proposed method are presented together with a comparative analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI5应助孔小白采纳,获得10
2秒前
2秒前
舒适逊完成签到 ,获得积分10
2秒前
科研通AI5应助11111采纳,获得10
3秒前
CipherSage应助hxn采纳,获得10
3秒前
5秒前
深情安青应助shatang采纳,获得10
5秒前
zxx5012发布了新的文献求助10
5秒前
芥丶子完成签到,获得积分10
6秒前
曾开心完成签到,获得积分10
6秒前
平淡南霜发布了新的文献求助10
6秒前
Blue_Pig发布了新的文献求助10
7秒前
李健的小迷弟应助逐风采纳,获得30
7秒前
yatou5651发布了新的文献求助10
8秒前
Akim应助和谐乌龟采纳,获得10
8秒前
peng完成签到,获得积分20
9秒前
CipherSage应助汉关采纳,获得10
9秒前
10秒前
10秒前
10秒前
丘比特应助XM采纳,获得10
10秒前
bkagyin应助Blue_Pig采纳,获得10
11秒前
12秒前
13秒前
13秒前
完美世界应助加油加油采纳,获得10
14秒前
14秒前
15秒前
ns发布了新的文献求助30
17秒前
11111发布了新的文献求助10
17秒前
18秒前
药学牛马完成签到,获得积分10
18秒前
张zi发布了新的文献求助10
19秒前
yatou5651发布了新的文献求助10
20秒前
20秒前
小魏不学无术完成签到,获得积分10
20秒前
木棉发布了新的文献求助10
20秒前
A1234发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808