Dual-MGAN: An Efficient Approach for Semi-supervised Outlier Detection with Few Identified Anomalies

异常检测 离群值 计算机科学 人工智能 对偶(语法数字) 任务(项目管理) 模式识别(心理学) 数据挖掘 机器学习 艺术 文学类 管理 经济
作者
Zhe Li,Chunhua Sun,Chunli Liu,Xiayu Chen,Meng Wang,Yezheng Liu
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:16 (6): 1-30 被引量:3
标识
DOI:10.1145/3522690
摘要

Outlier detection is an important task in data mining, and many technologies for it have been explored in various applications. However, owing to the default assumption that outliers are not concentrated, unsupervised outlier detection may not correctly identify group anomalies with higher levels of density. Although high detection rates and optimal parameters can usually be achieved by using supervised outlier detection, obtaining a sufficient number of correct labels is a time-consuming task. To solve these problems, we focus on semi-supervised outlier detection with few identified anomalies and a large amount of unlabeled data. The task of semi-supervised outlier detection is first decomposed into the detection of discrete anomalies and that of partially identified group anomalies, and a distribution construction sub-module and a data augmentation sub-module are then proposed to identify them, respectively. In this way, the dual multiple generative adversarial networks (Dual-MGAN) that combine the two sub-modules can identify discrete as well as partially identified group anomalies. In addition, in view of the difficulty of determining the stop node of training, two evaluation indicators are introduced to evaluate the training status of the sub-GANs. Extensive experiments on synthetic and real-world data show that the proposed Dual-MGAN can significantly improve the accuracy of outlier detection, and the proposed evaluation indicators can reflect the training status of the sub-GANs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林秋沐发布了新的文献求助10
刚刚
1秒前
我是老大应助优秀的半双采纳,获得10
1秒前
科研通AI2S应助辉哥采纳,获得10
1秒前
飞快的羊青完成签到,获得积分10
1秒前
我没昵称完成签到,获得积分10
2秒前
ww发布了新的文献求助10
2秒前
3秒前
领导范儿应助Morri采纳,获得10
4秒前
4秒前
上官若男应助妮妮采纳,获得10
6秒前
lw发布了新的文献求助10
6秒前
7秒前
xiaozuo发布了新的文献求助10
7秒前
7秒前
润华发布了新的文献求助10
7秒前
香蕉觅云应助元宝采纳,获得10
8秒前
棒棒发布了新的文献求助10
8秒前
9秒前
9秒前
五虎完成签到,获得积分10
9秒前
10秒前
林秋沐完成签到,获得积分10
10秒前
10秒前
三里墩头应助jiangnan采纳,获得10
11秒前
cocolu应助jiangnan采纳,获得10
11秒前
机智憨憨应助jiangnan采纳,获得10
12秒前
13秒前
turtle_medchem完成签到,获得积分10
13秒前
苏柏亚发布了新的文献求助10
14秒前
TOM发布了新的文献求助10
14秒前
14秒前
科研通AI2S应助Quinn采纳,获得10
15秒前
15秒前
zigzag发布了新的文献求助20
15秒前
16秒前
CipherSage应助fff采纳,获得10
16秒前
JamesPei应助橙子采纳,获得10
16秒前
Lucas应助默默访风采纳,获得10
16秒前
Owen应助guo采纳,获得10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301458
求助须知:如何正确求助?哪些是违规求助? 2936149
关于积分的说明 8476364
捐赠科研通 2609940
什么是DOI,文献DOI怎么找? 1424954
科研通“疑难数据库(出版商)”最低求助积分说明 662206
邀请新用户注册赠送积分活动 646242