Dual-MGAN: An Efficient Approach for Semi-supervised Outlier Detection with Few Identified Anomalies

异常检测 离群值 计算机科学 人工智能 对偶(语法数字) 任务(项目管理) 模式识别(心理学) 数据挖掘 机器学习 艺术 文学类 管理 经济
作者
Zhe Li,Chunhua Sun,Chunli Liu,Xiayu Chen,Meng Wang,Yezheng Liu
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:16 (6): 1-30 被引量:3
标识
DOI:10.1145/3522690
摘要

Outlier detection is an important task in data mining, and many technologies for it have been explored in various applications. However, owing to the default assumption that outliers are not concentrated, unsupervised outlier detection may not correctly identify group anomalies with higher levels of density. Although high detection rates and optimal parameters can usually be achieved by using supervised outlier detection, obtaining a sufficient number of correct labels is a time-consuming task. To solve these problems, we focus on semi-supervised outlier detection with few identified anomalies and a large amount of unlabeled data. The task of semi-supervised outlier detection is first decomposed into the detection of discrete anomalies and that of partially identified group anomalies, and a distribution construction sub-module and a data augmentation sub-module are then proposed to identify them, respectively. In this way, the dual multiple generative adversarial networks (Dual-MGAN) that combine the two sub-modules can identify discrete as well as partially identified group anomalies. In addition, in view of the difficulty of determining the stop node of training, two evaluation indicators are introduced to evaluate the training status of the sub-GANs. Extensive experiments on synthetic and real-world data show that the proposed Dual-MGAN can significantly improve the accuracy of outlier detection, and the proposed evaluation indicators can reflect the training status of the sub-GANs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
李田田发布了新的文献求助10
3秒前
3秒前
计科通完成签到,获得积分10
4秒前
4秒前
乐乐应助小盒采纳,获得10
4秒前
JamesPei应助潇湘夜雨采纳,获得10
5秒前
5秒前
lyt发布了新的文献求助10
6秒前
默默紊完成签到,获得积分10
7秒前
大大泡泡发布了新的文献求助10
7秒前
小黎关注了科研通微信公众号
7秒前
8秒前
8秒前
9秒前
马康辉应助墙头的草采纳,获得10
10秒前
PEI发布了新的文献求助10
10秒前
12秒前
许昊龙发布了新的文献求助10
13秒前
orixero应助学术混子采纳,获得10
13秒前
lyt完成签到,获得积分10
13秒前
浮浮世世发布了新的文献求助30
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
魔笛的云宝完成签到,获得积分10
17秒前
冷静飞柏发布了新的文献求助10
18秒前
柚子完成签到,获得积分20
18秒前
SYLH应助偷乐采纳,获得30
19秒前
19秒前
伍浩龙发布了新的文献求助10
19秒前
20秒前
21秒前
勘察加锅炉房完成签到,获得积分10
21秒前
ZXFFF完成签到,获得积分20
21秒前
23秒前
勿明应助爱学习的曼卉采纳,获得30
23秒前
ZXFFF发布了新的文献求助10
24秒前
脑洞疼应助许昊龙采纳,获得10
24秒前
iu发布了新的文献求助10
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979896
求助须知:如何正确求助?哪些是违规求助? 3523949
关于积分的说明 11219166
捐赠科研通 3261387
什么是DOI,文献DOI怎么找? 1800629
邀请新用户注册赠送积分活动 879209
科研通“疑难数据库(出版商)”最低求助积分说明 807202