Hierarchical Clustering Split for Low-Bias Evaluation of Drug-Target Interaction Prediction

概化理论 计算机科学 聚类分析 机器学习 人工智能 随机森林 数据挖掘 深度学习 统计 数学
作者
Peizhen Bai,Filip Miljković,Yan Ge,Nigel Greene,Bino John,Haiping Lu
标识
DOI:10.1109/bibm52615.2021.9669515
摘要

Drug-target interaction (DTI) prediction is important in drug discovery and chemogenomics studies. Machine learning, particularly deep learning, has advanced this area significantly over the past few years. However, a significant gap between the performance reported in academic papers and that in practical drug discovery settings, e.g. the random-split-based evaluation strategy tends to be too optimistic in estimating the prediction performance in real-world settings. Such performance gap is largely due to hidden data bias in experimental datasets and inappropriate data split. In this paper, we construct a low-bias DTI dataset and study more challenging data split strategies to improve performance evaluation for real-world settings. Specifically, we study the data bias in a popular DTI dataset, BindingDB, and re-evaluate the prediction performance of three state-of-the-art deep learning models using five different data split strategies: random split, cold drug split, scaffold split, and two hierarchical-clustering-based splits. In addition, we comprehensively examine six performance metrics. Our experimental results confirm the overoptimism of the popular random split and show that hierarchical-clustering-based splits are far more challenging and can provide potentially more useful assessment of model generalizability in real-world DTI prediction settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haoooooooooooooo应助LSH970829采纳,获得10
1秒前
搜集达人应助求知的周采纳,获得30
1秒前
1秒前
研友_ZlqeD8完成签到,获得积分10
1秒前
1秒前
1秒前
领导范儿应助juaner采纳,获得10
2秒前
2秒前
3秒前
3秒前
Orange应助聪明新梅采纳,获得10
4秒前
4秒前
Mashiro发布了新的文献求助10
4秒前
Zhang发布了新的文献求助10
4秒前
JM发布了新的文献求助10
4秒前
朱云发布了新的文献求助10
5秒前
杨佳宁发布了新的文献求助10
5秒前
十号发布了新的文献求助10
6秒前
落后的乌龟应助小太阳采纳,获得10
6秒前
6秒前
领导范儿应助shu采纳,获得10
6秒前
chemchen完成签到,获得积分10
6秒前
HZH完成签到,获得积分10
6秒前
圆圆901234发布了新的文献求助30
7秒前
8秒前
花粉过敏完成签到,获得积分10
9秒前
KXQ发布了新的文献求助10
9秒前
科研通AI2S应助敲敲采纳,获得10
9秒前
霜序完成签到,获得积分10
10秒前
水蔓菁完成签到,获得积分10
10秒前
momo完成签到 ,获得积分10
10秒前
10秒前
10秒前
还单身的老虎完成签到,获得积分10
10秒前
Mashiro完成签到,获得积分10
10秒前
无花果应助优雅的听兰采纳,获得10
11秒前
真实的南琴完成签到,获得积分10
12秒前
12秒前
勤奋白昼完成签到,获得积分20
12秒前
CodeCraft应助gan采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049