Hierarchical Clustering Split for Low-Bias Evaluation of Drug-Target Interaction Prediction

概化理论 计算机科学 聚类分析 机器学习 人工智能 随机森林 数据挖掘 深度学习 统计 数学
作者
Peizhen Bai,Filip Miljković,Yan Ge,Nigel Greene,Bino John,Haiping Lu
标识
DOI:10.1109/bibm52615.2021.9669515
摘要

Drug-target interaction (DTI) prediction is important in drug discovery and chemogenomics studies. Machine learning, particularly deep learning, has advanced this area significantly over the past few years. However, a significant gap between the performance reported in academic papers and that in practical drug discovery settings, e.g. the random-split-based evaluation strategy tends to be too optimistic in estimating the prediction performance in real-world settings. Such performance gap is largely due to hidden data bias in experimental datasets and inappropriate data split. In this paper, we construct a low-bias DTI dataset and study more challenging data split strategies to improve performance evaluation for real-world settings. Specifically, we study the data bias in a popular DTI dataset, BindingDB, and re-evaluate the prediction performance of three state-of-the-art deep learning models using five different data split strategies: random split, cold drug split, scaffold split, and two hierarchical-clustering-based splits. In addition, we comprehensively examine six performance metrics. Our experimental results confirm the overoptimism of the popular random split and show that hierarchical-clustering-based splits are far more challenging and can provide potentially more useful assessment of model generalizability in real-world DTI prediction settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助憔悴的坦克采纳,获得10
1秒前
2秒前
2秒前
苗雪阳完成签到,获得积分20
3秒前
Driscoll完成签到 ,获得积分10
3秒前
letter发布了新的文献求助10
3秒前
3秒前
科研通AI5应助阿斯蒂芬采纳,获得10
3秒前
无奈的背包完成签到 ,获得积分10
4秒前
桐桐应助lc采纳,获得10
4秒前
一见喜发布了新的文献求助10
5秒前
bkagyin应助小半个菠萝采纳,获得10
5秒前
6秒前
肖鹏发布了新的文献求助10
7秒前
8秒前
ABC发布了新的文献求助10
8秒前
青栀发布了新的文献求助10
8秒前
汉堡包应助可可采纳,获得10
9秒前
大模型应助苗条的小蜜蜂采纳,获得10
9秒前
长乐杨完成签到 ,获得积分20
10秒前
ding应助kkkkkoi采纳,获得10
10秒前
11秒前
新柳发布了新的文献求助10
12秒前
共享精神应助等人的咖啡采纳,获得10
12秒前
14秒前
幸福大白发布了新的文献求助10
14秒前
14秒前
zll完成签到 ,获得积分20
15秒前
CodeCraft应助Gang采纳,获得10
15秒前
不配.应助yu采纳,获得30
15秒前
15秒前
阳佟雪旋完成签到,获得积分10
16秒前
16秒前
kobe发布了新的文献求助10
16秒前
星辰大海应助ding采纳,获得30
17秒前
ABC完成签到,获得积分10
17秒前
17秒前
科研通AI6应助肖鹏采纳,获得10
17秒前
lc发布了新的文献求助10
18秒前
18秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547326
求助须知:如何正确求助?哪些是违规求助? 3978277
关于积分的说明 12318591
捐赠科研通 3646879
什么是DOI,文献DOI怎么找? 2008395
邀请新用户注册赠送积分活动 1043972
科研通“疑难数据库(出版商)”最低求助积分说明 932554