Hierarchical Clustering Split for Low-Bias Evaluation of Drug-Target Interaction Prediction

概化理论 计算机科学 聚类分析 机器学习 人工智能 随机森林 数据挖掘 深度学习 统计 数学
作者
Peizhen Bai,Filip Miljković,Yan Ge,Nigel Greene,Bino John,Haiping Lu
标识
DOI:10.1109/bibm52615.2021.9669515
摘要

Drug-target interaction (DTI) prediction is important in drug discovery and chemogenomics studies. Machine learning, particularly deep learning, has advanced this area significantly over the past few years. However, a significant gap between the performance reported in academic papers and that in practical drug discovery settings, e.g. the random-split-based evaluation strategy tends to be too optimistic in estimating the prediction performance in real-world settings. Such performance gap is largely due to hidden data bias in experimental datasets and inappropriate data split. In this paper, we construct a low-bias DTI dataset and study more challenging data split strategies to improve performance evaluation for real-world settings. Specifically, we study the data bias in a popular DTI dataset, BindingDB, and re-evaluate the prediction performance of three state-of-the-art deep learning models using five different data split strategies: random split, cold drug split, scaffold split, and two hierarchical-clustering-based splits. In addition, we comprehensively examine six performance metrics. Our experimental results confirm the overoptimism of the popular random split and show that hierarchical-clustering-based splits are far more challenging and can provide potentially more useful assessment of model generalizability in real-world DTI prediction settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小安同学完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
gglp完成签到 ,获得积分10
4秒前
Fengzhen007完成签到,获得积分10
5秒前
7秒前
潜龙完成签到 ,获得积分10
7秒前
Febridge完成签到,获得积分10
9秒前
王京华完成签到,获得积分10
10秒前
yznfly应助化简为繁采纳,获得30
11秒前
乐观海云完成签到 ,获得积分10
11秒前
陈咪咪完成签到,获得积分10
11秒前
Ares完成签到,获得积分10
12秒前
浮游应助imi采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
15秒前
Greg应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
ding应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
15秒前
张庭豪完成签到,获得积分10
15秒前
17秒前
sdjjis完成签到 ,获得积分10
17秒前
Snail6完成签到,获得积分10
18秒前
研友_LX7zK8完成签到,获得积分10
19秒前
简奥斯汀完成签到 ,获得积分10
19秒前
wxp5294完成签到,获得积分10
19秒前
19秒前
寒冷丹雪完成签到,获得积分10
19秒前
缺缺完成签到,获得积分10
20秒前
牛仔完成签到 ,获得积分10
21秒前
22秒前
时有落花至完成签到,获得积分10
23秒前
可靠的千凝完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071