Hierarchical Clustering Split for Low-Bias Evaluation of Drug-Target Interaction Prediction

概化理论 计算机科学 聚类分析 机器学习 人工智能 随机森林 数据挖掘 深度学习 统计 数学
作者
Peizhen Bai,Filip Miljković,Yan Ge,Nigel Greene,Bino John,Haiping Lu
标识
DOI:10.1109/bibm52615.2021.9669515
摘要

Drug-target interaction (DTI) prediction is important in drug discovery and chemogenomics studies. Machine learning, particularly deep learning, has advanced this area significantly over the past few years. However, a significant gap between the performance reported in academic papers and that in practical drug discovery settings, e.g. the random-split-based evaluation strategy tends to be too optimistic in estimating the prediction performance in real-world settings. Such performance gap is largely due to hidden data bias in experimental datasets and inappropriate data split. In this paper, we construct a low-bias DTI dataset and study more challenging data split strategies to improve performance evaluation for real-world settings. Specifically, we study the data bias in a popular DTI dataset, BindingDB, and re-evaluate the prediction performance of three state-of-the-art deep learning models using five different data split strategies: random split, cold drug split, scaffold split, and two hierarchical-clustering-based splits. In addition, we comprehensively examine six performance metrics. Our experimental results confirm the overoptimism of the popular random split and show that hierarchical-clustering-based splits are far more challenging and can provide potentially more useful assessment of model generalizability in real-world DTI prediction settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
在水一方应助受伤海秋采纳,获得10
2秒前
完美世界应助自然剑采纳,获得10
2秒前
2秒前
共享精神应助迷路的猎豹采纳,获得10
3秒前
3秒前
4秒前
4秒前
小何发布了新的文献求助10
5秒前
科技hiu个完成签到 ,获得积分10
5秒前
6秒前
科目三应助sqq采纳,获得10
6秒前
orixero应助霏冉采纳,获得10
7秒前
哈哈镜阿姐应助海蓝云天采纳,获得10
7秒前
闪闪的清炎完成签到,获得积分20
7秒前
8秒前
fengmian发布了新的文献求助10
8秒前
8秒前
chenxin完成签到 ,获得积分10
8秒前
10秒前
清脆的水蜜桃完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
13秒前
13秒前
FYD发布了新的文献求助10
13秒前
ksx完成签到,获得积分10
13秒前
15秒前
脑洞疼应助胖胖采纳,获得10
16秒前
团结发布了新的文献求助10
16秒前
16秒前
光亮鹤发布了新的文献求助10
17秒前
嘿嘿完成签到,获得积分10
17秒前
ww完成签到,获得积分10
18秒前
w1x2123发布了新的文献求助10
18秒前
aq发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642264
求助须知:如何正确求助?哪些是违规求助? 4758561
关于积分的说明 15017114
捐赠科研通 4800890
什么是DOI,文献DOI怎么找? 2566214
邀请新用户注册赠送积分活动 1524333
关于科研通互助平台的介绍 1483913