HGNN: Hyperedge-based graph neural network for MOOC Course Recommendation

计算机科学 联营 电影 人工智能 图形 循环神经网络 人工神经网络 交叉熵 期限(时间) 嵌入 机器学习 理论计算机科学 推荐系统 自然语言处理 协同过滤 模式识别(心理学) 量子力学 物理
作者
Xinhua Wang,Wenyun Ma,Lei Guo,Haoran Jiang,Liu Fang-ai,Changdi Xu
出处
期刊:Information Processing and Management [Elsevier]
卷期号:59 (3): 102938-102938 被引量:49
标识
DOI:10.1016/j.ipm.2022.102938
摘要

Previous studies on Course Recommendation (CR) mainly focus on investigating the sequential relationships among courses (RNN is applied) and fail to learn the similarity relationships among learners. Moreover, existing RNN-based methods can only model courses’ short-term sequential patterns due to the inherent shortcomings of RNNs. In light of the above issues, we develop a hyperedge-based graph neural network, namely HGNN, for CR. Specifically, (1) to model the relationships among learners, we treat learners (i.e., hyperedges) as the sets of courses in a hypergraph, and convert the task of learning learners’ representations to induce the embeddings for hyperedges, where a hyperedge-based graph attention network is further proposed. (2) To simultaneously consider courses’ long-term and short-term sequential relationships, we first construct a course sequential graph across learners, and learn courses’ representations via a modified graph attention network. Then, we feed the learned representations into a GRU-based sequence encoder to infer their short-term patterns, and deem the last hidden state as the learned sequence-level learner embedding. After that, we obtain the learners’ final representations by a product pooling operation to retain features from different latent spaces, and optimize a cross-entropy loss to make recommendations. To evaluate our proposed solution HGNN, we conduct extensive experiments on two real-world datasets, XuetangX and MovieLens. We conduct experiments on MovieLens to prove the extensibility of our solution on other collections. From the experimental results, we can find that HGNN evidently outperforms other recent CR methods on both datasets, achieving 11.96% on [email protected], 16.01% on [email protected], and 27.62% on [email protected] on XuetangX, demonstrating the effectiveness of studying CR in a hypergraph, and the importance of considering both long-term and short-term sequential patterns of courses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Herry完成签到,获得积分20
1秒前
smottom应助堡主采纳,获得10
1秒前
隐形曼青应助Georges-09采纳,获得10
1秒前
1秒前
曾曾关注了科研通微信公众号
1秒前
无敌完成签到,获得积分10
2秒前
云宝完成签到,获得积分10
2秒前
myyang发布了新的文献求助10
2秒前
勤奋的天亦完成签到,获得积分10
2秒前
Nature完成签到,获得积分10
2秒前
打打应助weofihqerg采纳,获得10
3秒前
3秒前
4秒前
Jared应助小马采纳,获得10
4秒前
4秒前
4秒前
无可匹敌的饭量完成签到,获得积分10
4秒前
Jason完成签到,获得积分10
5秒前
shaung yang发布了新的文献求助10
5秒前
5秒前
XY完成签到 ,获得积分20
5秒前
黄同学完成签到,获得积分10
6秒前
warte发布了新的文献求助10
6秒前
6秒前
花痴的易真完成签到,获得积分10
6秒前
7秒前
薯片发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
202583080239完成签到,获得积分10
7秒前
8秒前
8秒前
粤123发布了新的文献求助10
8秒前
lpyee完成签到,获得积分10
9秒前
9秒前
9秒前
李蝶儿完成签到 ,获得积分10
9秒前
ww发布了新的文献求助10
9秒前
bububusbu完成签到,获得积分10
10秒前
wanci应助月亮与木恩采纳,获得10
11秒前
lllllll完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629915
求助须知:如何正确求助?哪些是违规求助? 4721053
关于积分的说明 14971551
捐赠科研通 4787872
什么是DOI,文献DOI怎么找? 2556612
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478302