亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HGNN: Hyperedge-based graph neural network for MOOC Course Recommendation

计算机科学 联营 电影 人工智能 图形 循环神经网络 人工神经网络 交叉熵 期限(时间) 嵌入 机器学习 理论计算机科学 推荐系统 自然语言处理 协同过滤 模式识别(心理学) 量子力学 物理
作者
Xinhua Wang,Wenyun Ma,Lei Guo,Haoran Jiang,Liu Fang-ai,Changdi Xu
出处
期刊:Information Processing and Management [Elsevier]
卷期号:59 (3): 102938-102938 被引量:49
标识
DOI:10.1016/j.ipm.2022.102938
摘要

Previous studies on Course Recommendation (CR) mainly focus on investigating the sequential relationships among courses (RNN is applied) and fail to learn the similarity relationships among learners. Moreover, existing RNN-based methods can only model courses’ short-term sequential patterns due to the inherent shortcomings of RNNs. In light of the above issues, we develop a hyperedge-based graph neural network, namely HGNN, for CR. Specifically, (1) to model the relationships among learners, we treat learners (i.e., hyperedges) as the sets of courses in a hypergraph, and convert the task of learning learners’ representations to induce the embeddings for hyperedges, where a hyperedge-based graph attention network is further proposed. (2) To simultaneously consider courses’ long-term and short-term sequential relationships, we first construct a course sequential graph across learners, and learn courses’ representations via a modified graph attention network. Then, we feed the learned representations into a GRU-based sequence encoder to infer their short-term patterns, and deem the last hidden state as the learned sequence-level learner embedding. After that, we obtain the learners’ final representations by a product pooling operation to retain features from different latent spaces, and optimize a cross-entropy loss to make recommendations. To evaluate our proposed solution HGNN, we conduct extensive experiments on two real-world datasets, XuetangX and MovieLens. We conduct experiments on MovieLens to prove the extensibility of our solution on other collections. From the experimental results, we can find that HGNN evidently outperforms other recent CR methods on both datasets, achieving 11.96% on [email protected], 16.01% on [email protected], and 27.62% on [email protected] on XuetangX, demonstrating the effectiveness of studying CR in a hypergraph, and the importance of considering both long-term and short-term sequential patterns of courses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
8秒前
13秒前
lisaltp完成签到 ,获得积分10
14秒前
17秒前
18秒前
田様应助科研进化中采纳,获得10
22秒前
33秒前
完美世界应助Maomaojiangjiang采纳,获得10
43秒前
CodeCraft应助持卿采纳,获得10
1分钟前
JamesPei应助香菜张采纳,获得10
1分钟前
无极微光应助白华苍松采纳,获得20
1分钟前
1分钟前
1分钟前
香菜张发布了新的文献求助10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
优秀棒棒糖完成签到 ,获得积分10
2分钟前
Jonathan发布了新的文献求助10
2分钟前
2分钟前
Maomaojiangjiang完成签到,获得积分10
2分钟前
不会学习的小郭完成签到 ,获得积分10
2分钟前
2分钟前
Jonathan完成签到,获得积分10
2分钟前
蔡秋景完成签到,获得积分10
3分钟前
蔡秋景发布了新的文献求助10
3分钟前
苹果完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
4分钟前
完美世界应助科研进化中采纳,获得10
4分钟前
深情安青应助贝利亚采纳,获得10
4分钟前
4分钟前
4分钟前
持卿发布了新的文献求助10
4分钟前
4分钟前
mialabulula发布了新的文献求助10
5分钟前
执着艳完成签到 ,获得积分10
5分钟前
5分钟前
kuoping完成签到,获得积分0
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529234
求助须知:如何正确求助?哪些是违规求助? 4618411
关于积分的说明 14562581
捐赠科研通 4557420
什么是DOI,文献DOI怎么找? 2497506
邀请新用户注册赠送积分活动 1477735
关于科研通互助平台的介绍 1449171