HGNN: Hyperedge-based graph neural network for MOOC Course Recommendation

计算机科学 联营 电影 人工智能 图形 循环神经网络 人工神经网络 交叉熵 期限(时间) 嵌入 机器学习 理论计算机科学 推荐系统 自然语言处理 协同过滤 模式识别(心理学) 量子力学 物理
作者
Xinhua Wang,Wenyun Ma,Lei Guo,Haoran Jiang,Liu Fang-ai,Changdi Xu
出处
期刊:Information Processing and Management [Elsevier]
卷期号:59 (3): 102938-102938 被引量:41
标识
DOI:10.1016/j.ipm.2022.102938
摘要

Previous studies on Course Recommendation (CR) mainly focus on investigating the sequential relationships among courses (RNN is applied) and fail to learn the similarity relationships among learners. Moreover, existing RNN-based methods can only model courses’ short-term sequential patterns due to the inherent shortcomings of RNNs. In light of the above issues, we develop a hyperedge-based graph neural network, namely HGNN, for CR. Specifically, (1) to model the relationships among learners, we treat learners (i.e., hyperedges) as the sets of courses in a hypergraph, and convert the task of learning learners’ representations to induce the embeddings for hyperedges, where a hyperedge-based graph attention network is further proposed. (2) To simultaneously consider courses’ long-term and short-term sequential relationships, we first construct a course sequential graph across learners, and learn courses’ representations via a modified graph attention network. Then, we feed the learned representations into a GRU-based sequence encoder to infer their short-term patterns, and deem the last hidden state as the learned sequence-level learner embedding. After that, we obtain the learners’ final representations by a product pooling operation to retain features from different latent spaces, and optimize a cross-entropy loss to make recommendations. To evaluate our proposed solution HGNN, we conduct extensive experiments on two real-world datasets, XuetangX and MovieLens. We conduct experiments on MovieLens to prove the extensibility of our solution on other collections. From the experimental results, we can find that HGNN evidently outperforms other recent CR methods on both datasets, achieving 11.96% on [email protected], 16.01% on [email protected], and 27.62% on [email protected] on XuetangX, demonstrating the effectiveness of studying CR in a hypergraph, and the importance of considering both long-term and short-term sequential patterns of courses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
无名完成签到,获得积分20
2秒前
优秀不愁发布了新的文献求助10
3秒前
幽默的山雁完成签到,获得积分10
4秒前
jackten发布了新的文献求助10
4秒前
洋桔梗完成签到 ,获得积分10
4秒前
kk发布了新的文献求助10
4秒前
TOTORO完成签到,获得积分10
4秒前
Sean发布了新的文献求助10
4秒前
等待的清发布了新的文献求助10
6秒前
car子发布了新的文献求助10
6秒前
我是老大应助无名采纳,获得10
6秒前
slj完成签到,获得积分10
7秒前
8秒前
脑洞疼应助witting采纳,获得10
11秒前
ljjun发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
大方嵩完成签到,获得积分10
12秒前
jihenyouai0213完成签到,获得积分10
13秒前
14秒前
15秒前
123完成签到,获得积分10
16秒前
星星发布了新的文献求助10
16秒前
共享精神应助woollen2022采纳,获得10
16秒前
17秒前
高源高源发布了新的文献求助10
18秒前
科研通AI2S应助姜姜采纳,获得10
18秒前
Singularity应助姜姜采纳,获得10
18秒前
syk应助姜姜采纳,获得10
18秒前
salt7发布了新的文献求助10
18秒前
明亮无颜发布了新的文献求助10
20秒前
lh完成签到,获得积分20
20秒前
21秒前
23秒前
高源高源完成签到,获得积分10
23秒前
科研八戒应助万莎莎采纳,获得10
24秒前
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310609
求助须知:如何正确求助?哪些是违规求助? 2943401
关于积分的说明 8514871
捐赠科研通 2618733
什么是DOI,文献DOI怎么找? 1431388
科研通“疑难数据库(出版商)”最低求助积分说明 664462
邀请新用户注册赠送积分活动 649626