HGNN: Hyperedge-based graph neural network for MOOC Course Recommendation

计算机科学 联营 电影 人工智能 图形 循环神经网络 人工神经网络 交叉熵 期限(时间) 嵌入 机器学习 理论计算机科学 推荐系统 自然语言处理 协同过滤 模式识别(心理学) 量子力学 物理
作者
Xinhua Wang,Wenyun Ma,Lei Guo,Haoran Jiang,Liu Fang-ai,Changdi Xu
出处
期刊:Information Processing and Management [Elsevier]
卷期号:59 (3): 102938-102938 被引量:41
标识
DOI:10.1016/j.ipm.2022.102938
摘要

Previous studies on Course Recommendation (CR) mainly focus on investigating the sequential relationships among courses (RNN is applied) and fail to learn the similarity relationships among learners. Moreover, existing RNN-based methods can only model courses’ short-term sequential patterns due to the inherent shortcomings of RNNs. In light of the above issues, we develop a hyperedge-based graph neural network, namely HGNN, for CR. Specifically, (1) to model the relationships among learners, we treat learners (i.e., hyperedges) as the sets of courses in a hypergraph, and convert the task of learning learners’ representations to induce the embeddings for hyperedges, where a hyperedge-based graph attention network is further proposed. (2) To simultaneously consider courses’ long-term and short-term sequential relationships, we first construct a course sequential graph across learners, and learn courses’ representations via a modified graph attention network. Then, we feed the learned representations into a GRU-based sequence encoder to infer their short-term patterns, and deem the last hidden state as the learned sequence-level learner embedding. After that, we obtain the learners’ final representations by a product pooling operation to retain features from different latent spaces, and optimize a cross-entropy loss to make recommendations. To evaluate our proposed solution HGNN, we conduct extensive experiments on two real-world datasets, XuetangX and MovieLens. We conduct experiments on MovieLens to prove the extensibility of our solution on other collections. From the experimental results, we can find that HGNN evidently outperforms other recent CR methods on both datasets, achieving 11.96% on [email protected], 16.01% on [email protected], and 27.62% on [email protected] on XuetangX, demonstrating the effectiveness of studying CR in a hypergraph, and the importance of considering both long-term and short-term sequential patterns of courses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
历史雨应助坚强的紊采纳,获得10
6秒前
冷傲的鞋子完成签到,获得积分10
7秒前
ganluren应助xunzhi采纳,获得10
8秒前
8秒前
FunHigh发布了新的文献求助10
8秒前
11秒前
青山发布了新的文献求助200
13秒前
14秒前
14秒前
李健的小迷弟应助huangyao采纳,获得10
14秒前
Akim应助Bingoxugogogo采纳,获得10
14秒前
FunHigh完成签到,获得积分10
15秒前
水若琳完成签到,获得积分10
16秒前
16秒前
16秒前
张伟发布了新的文献求助10
18秒前
也是难得取个名完成签到 ,获得积分10
20秒前
正在发布了新的文献求助10
22秒前
拼搏的小蘑菇完成签到,获得积分10
24秒前
青山完成签到,获得积分10
26秒前
26秒前
26秒前
胖头鱼应助RRRRRRR采纳,获得200
27秒前
29秒前
30秒前
胡HML发布了新的文献求助10
30秒前
AlvinCZY发布了新的文献求助10
31秒前
31秒前
huangyao发布了新的文献求助10
33秒前
33秒前
大个应助乐观的颦采纳,获得200
33秒前
慕青应助AlvinCZY采纳,获得10
35秒前
Flicker完成签到 ,获得积分10
36秒前
诸葛语琴发布了新的文献求助10
36秒前
38秒前
wlz发布了新的文献求助10
39秒前
诸葛语琴完成签到,获得积分10
41秒前
万能图书馆应助早发论文采纳,获得10
42秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084205
求助须知:如何正确求助?哪些是违规求助? 2737236
关于积分的说明 7544249
捐赠科研通 2386802
什么是DOI,文献DOI怎么找? 1265552
科研通“疑难数据库(出版商)”最低求助积分说明 613127
版权声明 598187