HGNN: Hyperedge-based graph neural network for MOOC Course Recommendation

计算机科学 联营 电影 人工智能 图形 循环神经网络 人工神经网络 交叉熵 期限(时间) 嵌入 机器学习 理论计算机科学 推荐系统 自然语言处理 协同过滤 模式识别(心理学) 量子力学 物理
作者
Xinhua Wang,Wenyun Ma,Lei Guo,Haoran Jiang,Liu Fang-ai,Changdi Xu
出处
期刊:Information Processing and Management [Elsevier]
卷期号:59 (3): 102938-102938 被引量:49
标识
DOI:10.1016/j.ipm.2022.102938
摘要

Previous studies on Course Recommendation (CR) mainly focus on investigating the sequential relationships among courses (RNN is applied) and fail to learn the similarity relationships among learners. Moreover, existing RNN-based methods can only model courses’ short-term sequential patterns due to the inherent shortcomings of RNNs. In light of the above issues, we develop a hyperedge-based graph neural network, namely HGNN, for CR. Specifically, (1) to model the relationships among learners, we treat learners (i.e., hyperedges) as the sets of courses in a hypergraph, and convert the task of learning learners’ representations to induce the embeddings for hyperedges, where a hyperedge-based graph attention network is further proposed. (2) To simultaneously consider courses’ long-term and short-term sequential relationships, we first construct a course sequential graph across learners, and learn courses’ representations via a modified graph attention network. Then, we feed the learned representations into a GRU-based sequence encoder to infer their short-term patterns, and deem the last hidden state as the learned sequence-level learner embedding. After that, we obtain the learners’ final representations by a product pooling operation to retain features from different latent spaces, and optimize a cross-entropy loss to make recommendations. To evaluate our proposed solution HGNN, we conduct extensive experiments on two real-world datasets, XuetangX and MovieLens. We conduct experiments on MovieLens to prove the extensibility of our solution on other collections. From the experimental results, we can find that HGNN evidently outperforms other recent CR methods on both datasets, achieving 11.96% on [email protected], 16.01% on [email protected], and 27.62% on [email protected] on XuetangX, demonstrating the effectiveness of studying CR in a hypergraph, and the importance of considering both long-term and short-term sequential patterns of courses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热果汁发布了新的文献求助10
刚刚
小包完成签到,获得积分10
1秒前
饱满以松完成签到 ,获得积分10
1秒前
哪有人不疯的完成签到,获得积分10
1秒前
星辰大海应助Alex采纳,获得10
1秒前
1秒前
jiaxin完成签到,获得积分10
2秒前
通通完成签到,获得积分10
2秒前
岑梨愁完成签到 ,获得积分10
2秒前
明理觅风完成签到 ,获得积分20
2秒前
3秒前
Gonna完成签到,获得积分10
3秒前
李俊枫发布了新的文献求助30
3秒前
xxy发布了新的文献求助10
3秒前
蒹葭关注了科研通微信公众号
4秒前
cc应助王富贵采纳,获得20
4秒前
鹿lu发布了新的文献求助10
5秒前
Dylan发布了新的文献求助10
5秒前
在水一方应助YL采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
hyy发布了新的文献求助10
5秒前
卜应完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
粲妈发布了新的文献求助10
7秒前
7秒前
Owen应助TristanGuan采纳,获得10
7秒前
CZL buaa完成签到,获得积分10
8秒前
LSX发布了新的文献求助10
8秒前
8秒前
8秒前
Savannah发布了新的文献求助10
8秒前
比天堂更美丽完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
Ava应助研友_8QxN1Z采纳,获得10
8秒前
褚明雪发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718526
求助须知:如何正确求助?哪些是违规求助? 5253251
关于积分的说明 15286270
捐赠科研通 4868688
什么是DOI,文献DOI怎么找? 2614382
邀请新用户注册赠送积分活动 1564207
关于科研通互助平台的介绍 1521755