HGNN: Hyperedge-based graph neural network for MOOC Course Recommendation

计算机科学 联营 电影 人工智能 图形 循环神经网络 人工神经网络 交叉熵 期限(时间) 嵌入 机器学习 理论计算机科学 推荐系统 自然语言处理 协同过滤 模式识别(心理学) 量子力学 物理
作者
Xinhua Wang,Wenyun Ma,Lei Guo,Haoran Jiang,Liu Fang-ai,Changdi Xu
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:59 (3): 102938-102938 被引量:49
标识
DOI:10.1016/j.ipm.2022.102938
摘要

Previous studies on Course Recommendation (CR) mainly focus on investigating the sequential relationships among courses (RNN is applied) and fail to learn the similarity relationships among learners. Moreover, existing RNN-based methods can only model courses’ short-term sequential patterns due to the inherent shortcomings of RNNs. In light of the above issues, we develop a hyperedge-based graph neural network, namely HGNN, for CR. Specifically, (1) to model the relationships among learners, we treat learners (i.e., hyperedges) as the sets of courses in a hypergraph, and convert the task of learning learners’ representations to induce the embeddings for hyperedges, where a hyperedge-based graph attention network is further proposed. (2) To simultaneously consider courses’ long-term and short-term sequential relationships, we first construct a course sequential graph across learners, and learn courses’ representations via a modified graph attention network. Then, we feed the learned representations into a GRU-based sequence encoder to infer their short-term patterns, and deem the last hidden state as the learned sequence-level learner embedding. After that, we obtain the learners’ final representations by a product pooling operation to retain features from different latent spaces, and optimize a cross-entropy loss to make recommendations. To evaluate our proposed solution HGNN, we conduct extensive experiments on two real-world datasets, XuetangX and MovieLens. We conduct experiments on MovieLens to prove the extensibility of our solution on other collections. From the experimental results, we can find that HGNN evidently outperforms other recent CR methods on both datasets, achieving 11.96% on [email protected], 16.01% on [email protected], and 27.62% on [email protected] on XuetangX, demonstrating the effectiveness of studying CR in a hypergraph, and the importance of considering both long-term and short-term sequential patterns of courses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wcwzcz完成签到,获得积分10
1秒前
今后应助沉默的尔槐采纳,获得10
1秒前
残梦蝶发布了新的文献求助10
1秒前
re发布了新的文献求助10
1秒前
李爱国应助邵邵采纳,获得10
1秒前
扁桃体不发言完成签到,获得积分10
1秒前
英姑应助xiaobei88采纳,获得10
2秒前
3秒前
沧海一粟完成签到,获得积分10
3秒前
fzy发布了新的文献求助10
4秒前
程院发布了新的文献求助10
4秒前
爆米花应助沉默凡梦采纳,获得10
4秒前
东旭大兵发布了新的文献求助10
4秒前
herococa应助chengzi采纳,获得10
5秒前
老实怀蝶完成签到,获得积分10
5秒前
传奇3应助min采纳,获得10
5秒前
今后应助god采纳,获得10
6秒前
勤奋小懒虫完成签到,获得积分10
6秒前
孙格完成签到,获得积分10
7秒前
山岛风行发布了新的文献求助10
9秒前
wq完成签到,获得积分10
9秒前
Superlau完成签到,获得积分10
9秒前
双楠发布了新的文献求助20
10秒前
柑橘完成签到 ,获得积分10
10秒前
传奇3应助三岁采纳,获得10
11秒前
热心市民小红花应助jisoo采纳,获得10
11秒前
Ava应助ddd采纳,获得20
11秒前
汉堡包应助coollittlemouse采纳,获得10
11秒前
科研顺完成签到,获得积分20
11秒前
fzy完成签到,获得积分10
12秒前
舒心白山完成签到 ,获得积分10
12秒前
13秒前
WH完成签到,获得积分10
13秒前
14秒前
bkagyin应助re采纳,获得10
15秒前
朴素的闭月完成签到,获得积分10
15秒前
15秒前
123321321345发布了新的文献求助30
16秒前
god关闭了god文献求助
17秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951145
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082681
捐赠科研通 3226970
什么是DOI,文献DOI怎么找? 1784113
邀请新用户注册赠送积分活动 868202
科研通“疑难数据库(出版商)”最低求助积分说明 801089