Associating Preoperative MRI Features and Gene Expression Signatures of Early-stage Hepatocellular Carcinoma Patients using Machine Learning

磁共振成像 医学 肝细胞癌 相关性 人工智能 特征(语言学) 阶段(地层学) 放射科 内科学 计算机科学 生物 语言学 哲学 几何学 数学 古生物学
作者
Xiaoming Li,Lin Cheng,Chuanming Li,Xianling Hu,Xiaofei Hu,Liang Tan,Qing Li,Chen Liu,Jian Wang
出处
期刊:Journal of clinical and translational hepatology [Xia & He Publishing]
卷期号:10 (1): 63-71 被引量:8
标识
DOI:10.14218/jcth.2021.00023
摘要

The relationship between quantitative magnetic resonance imaging (MRI) imaging features and gene-expression signatures associated with the recurrence of hepatocellular carcinoma (HCC) is not well studied.In this study, we generated multivariable regression models to explore the correlation between the preoperative MRI features and Golgi membrane protein 1 (GOLM1), SET domain containing 7 (SETD7), and Rho family GTPase 1 (RND1) gene expression levels in a cohort study including 92 early-stage HCC patients. A total of 307 imaging features of tumor texture and shape were computed from T2-weighted MRI. The key MRI features were identified by performing a multi-step feature selection procedure including the correlation analysis and the application of RELIEFF algorithm. Afterward, regression models were generated using kernel-based support vector machines with 5-fold cross-validation.The features computed from higher specificity MRI better described GOLM1 and RND1 gene-expression levels, while imaging features computed from lower specificity MRI data were more descriptive for the SETD7 gene. The GOLM1 regression model generated with three features demonstrated a moderate positive correlation (p<0.001), and the RND1 model developed with five variables was positively associated (p<0.001) with gene expression levels. Moreover, RND1 regression model integrating four features was moderately correlated with expressed RND1 levels (p<0.001).The results demonstrated that MRI radiomics features could help quantify GOLM1, SETD7, and RND1 expression levels noninvasively and predict the recurrence risk for early-stage HCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张小尤完成签到,获得积分10
1秒前
zly发布了新的文献求助10
1秒前
萌dreaming应助ky采纳,获得10
3秒前
3秒前
郑郑爱吃蜂蜜完成签到 ,获得积分10
4秒前
lifeng发布了新的文献求助10
4秒前
斯文涔雨发布了新的文献求助10
5秒前
充电宝应助Jenny采纳,获得10
6秒前
暮城发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
Qi给Qi的求助进行了留言
6秒前
藏喜发布了新的文献求助20
7秒前
ecco2004完成签到,获得积分20
7秒前
7秒前
暴躁四叔应助青玄采纳,获得10
7秒前
8秒前
8秒前
8秒前
dd关闭了dd文献求助
9秒前
七安发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
shiyaouao发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
1234发布了新的文献求助50
13秒前
芒果发布了新的文献求助10
13秒前
夏寒珊发布了新的文献求助10
14秒前
Han发布了新的文献求助10
14秒前
WUHUDASM发布了新的文献求助10
14秒前
齐齐巴宾发布了新的文献求助10
14秒前
14秒前
14秒前
aa1212121发布了新的文献求助10
14秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470747
求助须知:如何正确求助?哪些是违规求助? 3063674
关于积分的说明 9085172
捐赠科研通 2754236
什么是DOI,文献DOI怎么找? 1511336
邀请新用户注册赠送积分活动 698372
科研通“疑难数据库(出版商)”最低求助积分说明 698253