Towards a sustainable monitoring: A self-powered smart transportation infrastructure skin

计算机科学 卷积神经网络 实时计算 深度学习 摩擦电效应 汽车工程 嵌入式系统 系统工程 人工智能 工程类 机械工程 复合材料 材料科学
作者
Qiang Zheng,Yue Hou,Hailu Yang,Puchuan Tan,Hongyu Shi,Zijin Xu,Zhoujing Ye,Ning Chen,Xuecheng Qu,Xi Han,Yang Zou,Xi Cui,Hui Yao,Yihan Chen,Wenhan Yao,Jinxi Zhang,Yanyan Chen,Liang Jia,Xingyu Gu,Dawei Wang
出处
期刊:Nano Energy [Elsevier BV]
卷期号:98: 107245-107245 被引量:48
标识
DOI:10.1016/j.nanoen.2022.107245
摘要

Sustainable monitoring of traffic using clean energy supply has always been a significant problem for engineers. In this study, we proposed a self-powered smart transportation infrastructure skin (SSTIS) as an innovative and bionic system for the traffic classification of a smart city. This system incorporated the self-powered flexible sensors with net-zero power consumption based on the Triboelectric Nanogenerator (TENG) and an intelligent analysis system based on artificial intelligence (AI). The feasibility of the SSTIS was tested using the full-scale accelerated pavement tests (APT) and the long-short term memory (LSTM) deep learning model with a vehicle axle load classification accuracy up to 89.06%. This robust SSTIS was later tested on highway and collected around 869,600 pieces of signals data. The generative adversarial networks (GAN) WGAN-GP (Wasserstein GAN - Gradient Penalty) was used for data augmentation, due to the imbalanced data of different vehicle types in actual traffic. The overall accuracy for on-road vehicle type classification improved to 81.06% using the convolutional neural network ResNet. Finally, we developed a mobile traffic signal information monitoring system based on cloud platform and Android framework, which enabled engineers to obtain the vehicle axle-load information mobilely. This study is the emerging design and engineering application of the self-powered flexible sensors for smart traffic monitoring, which provides a significant advance for intelligent transportation and smart cities in future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小青椒应助曾辉采纳,获得10
1秒前
1秒前
蹦蹦灯儿发布了新的文献求助10
1秒前
默默筮发布了新的文献求助10
1秒前
爱喝酸奶发布了新的文献求助10
1秒前
神奇宝贝完成签到,获得积分10
1秒前
2秒前
bensenback完成签到,获得积分10
2秒前
ok完成签到,获得积分10
2秒前
3秒前
Criminology34举报努力搬砖求助涉嫌违规
3秒前
7890733发布了新的文献求助10
3秒前
Natsu完成签到,获得积分10
3秒前
Accelerator完成签到,获得积分10
3秒前
zheng发布了新的文献求助30
4秒前
4秒前
噗咔咔ya完成签到 ,获得积分10
4秒前
5秒前
cc发布了新的文献求助10
5秒前
pcr163应助传统的宝莹采纳,获得200
5秒前
5秒前
5秒前
Nyxia发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
YXYWZMSZ发布了新的文献求助10
6秒前
6秒前
123完成签到,获得积分20
6秒前
7秒前
托尔斯泰完成签到,获得积分10
7秒前
水水完成签到 ,获得积分10
7秒前
顾易完成签到,获得积分10
7秒前
Duomo完成签到 ,获得积分10
7秒前
Dtt发布了新的文献求助10
8秒前
科研通AI6应助木玄机采纳,获得30
8秒前
ppboyindream发布了新的文献求助10
8秒前
宅了五百年完成签到,获得积分10
8秒前
8秒前
细心的棉花糖关注了科研通微信公众号
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068676
求助须知:如何正确求助?哪些是违规求助? 4290262
关于积分的说明 13366925
捐赠科研通 4110092
什么是DOI,文献DOI怎么找? 2250689
邀请新用户注册赠送积分活动 1255935
关于科研通互助平台的介绍 1188480