Towards a sustainable monitoring: A self-powered smart transportation infrastructure skin

计算机科学 卷积神经网络 实时计算 深度学习 摩擦电效应 汽车工程 嵌入式系统 系统工程 人工智能 工程类 机械工程 复合材料 材料科学
作者
Qiang Zheng,Yue Hou,Hailu Yang,Puchuan Tan,Hongyu Shi,Zijin Xu,Zhoujing Ye,Ning Chen,Xuecheng Qu,Xi Han,Yang Zou,Xi Cui,Hui Yao,Yihan Chen,Wenhan Yao,Jinxi Zhang,Yanyan Chen,Liang Jia,Xingyu Gu,Dawei Wang,Ya Wei,Jiangtao Xue,Baohong Jing,Zhu Zeng,Linbing Wang,L. Zhou,Zhong Lin Wang
出处
期刊:Nano Energy [Elsevier]
卷期号:98: 107245-107245 被引量:43
标识
DOI:10.1016/j.nanoen.2022.107245
摘要

Sustainable monitoring of traffic using clean energy supply has always been a significant problem for engineers. In this study, we proposed a self-powered smart transportation infrastructure skin (SSTIS) as an innovative and bionic system for the traffic classification of a smart city. This system incorporated the self-powered flexible sensors with net-zero power consumption based on the Triboelectric Nanogenerator (TENG) and an intelligent analysis system based on artificial intelligence (AI). The feasibility of the SSTIS was tested using the full-scale accelerated pavement tests (APT) and the long-short term memory (LSTM) deep learning model with a vehicle axle load classification accuracy up to 89.06%. This robust SSTIS was later tested on highway and collected around 869,600 pieces of signals data. The generative adversarial networks (GAN) WGAN-GP (Wasserstein GAN - Gradient Penalty) was used for data augmentation, due to the imbalanced data of different vehicle types in actual traffic. The overall accuracy for on-road vehicle type classification improved to 81.06% using the convolutional neural network ResNet. Finally, we developed a mobile traffic signal information monitoring system based on cloud platform and Android framework, which enabled engineers to obtain the vehicle axle-load information mobilely. This study is the emerging design and engineering application of the self-powered flexible sensors for smart traffic monitoring, which provides a significant advance for intelligent transportation and smart cities in future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
了0完成签到 ,获得积分10
6秒前
脑洞疼应助圣晟胜采纳,获得10
8秒前
霓娜酱发布了新的文献求助10
8秒前
10秒前
852应助xiaoxiao采纳,获得10
12秒前
lingjuanwu完成签到,获得积分10
12秒前
janice发布了新的文献求助10
13秒前
13秒前
快乐慕灵完成签到,获得积分10
15秒前
15秒前
JianYugen完成签到,获得积分10
15秒前
happy发布了新的文献求助10
16秒前
16秒前
17秒前
abe发布了新的文献求助10
18秒前
天天开心完成签到 ,获得积分10
18秒前
19秒前
20秒前
21秒前
所所应助clean采纳,获得10
22秒前
sad完成签到,获得积分10
23秒前
学术地瓜发布了新的文献求助10
23秒前
24秒前
25秒前
爱静静应助跳跃的访烟采纳,获得10
25秒前
在水一方应助圣晟胜采纳,获得10
26秒前
27秒前
27秒前
27秒前
segama完成签到 ,获得积分10
27秒前
在人中完成签到,获得积分10
27秒前
顾矜应助tangyuyi采纳,获得10
27秒前
我是老大应助满意冷荷采纳,获得10
30秒前
凝子老师发布了新的文献求助10
30秒前
Qinpy发布了新的文献求助20
31秒前
跳跃的访烟完成签到,获得积分10
31秒前
bkagyin应助janice采纳,获得10
32秒前
32秒前
clean发布了新的文献求助10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851