Joint Damage Identification in Frame Structures by Integrating a New Damage Index with Equilibrium Optimizer Algorithm

接头(建筑物) 帧(网络) 损伤控制 结构工程 鉴定(生物学) 计算机科学 算法 力矩(物理) 工程类 植物 经典力学 电信 生物 海洋学 物理 地质学
作者
Seyed Bahram Beheshti Aval,Pooya Mohebian
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:22 (05) 被引量:15
标识
DOI:10.1142/s0219455422500560
摘要

Beam-column joints are responsible for maintaining the integrity and stability of frame structures, and any damage to these critical components can endanger the overall safety and reliability of the structure. Hence, early detection of structural joint damage is of paramount importance. However, most of the available structural damage identification methods focus on identifying damage in structural members, and relatively fewer methods have been developed so far for assessing damage in structural joints. In view of this, the present study proposes a new two-stage method for joint damage identification of frame structures. In the first stage, an efficient damage indicator, called residual moment-based joint damage index (RMBJDI), is developed and applied to detect the location of potentially damaged joints. This damage indicator can help to reduce the number of involved damage variables by excluding healthy joints from the problem. In the second stage, the reduced dimension damage identification problem is formulated as an optimization problem and is further tackled by employing a robust meta-heuristic algorithm, namely equilibrium optimizer (EO), to determine the damage severity of suspected damaged joints. In order to assess the capability and effectiveness of the presented joint damage identification method, two numerical examples of frame structures are conducted under both noise-free and noisy conditions. The results demonstrate that the proposed two-stage method, which integrates RMBJDI with EO, is a highly accurate and powerful tool for localizing and quantifying the joint damage in frame structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助喻初原采纳,获得10
刚刚
任寒松完成签到,获得积分10
刚刚
可爱的函函应助xing采纳,获得10
刚刚
ht发布了新的文献求助10
刚刚
LM完成签到,获得积分10
刚刚
彭于晏应助Pa1mary采纳,获得10
1秒前
1秒前
1秒前
乐观小蕊完成签到,获得积分10
2秒前
lk发布了新的文献求助10
2秒前
李亚静发布了新的文献求助10
3秒前
学习发布了新的文献求助10
3秒前
13728891737完成签到,获得积分10
4秒前
可爱的函函应助小机灵鬼采纳,获得10
4秒前
张来完成签到 ,获得积分10
4秒前
孙漪发布了新的文献求助10
6秒前
6秒前
多云完成签到,获得积分10
6秒前
7秒前
顺莉发布了新的文献求助10
7秒前
7秒前
7秒前
TTTT完成签到,获得积分10
8秒前
hym发布了新的文献求助10
8秒前
老迟到的冰海完成签到,获得积分10
10秒前
ht完成签到,获得积分10
10秒前
10秒前
guo完成签到,获得积分10
10秒前
Khr1stINK发布了新的文献求助20
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
洛兮发布了新的文献求助10
11秒前
car发布了新的文献求助10
11秒前
小马甲应助笑傲江湖采纳,获得10
11秒前
Baegal完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693193
求助须知:如何正确求助?哪些是违规求助? 5091453
关于积分的说明 15210744
捐赠科研通 4850188
什么是DOI,文献DOI怎么找? 2601603
邀请新用户注册赠送积分活动 1553417
关于科研通互助平台的介绍 1511406