Joint Damage Identification in Frame Structures by Integrating a New Damage Index with Equilibrium Optimizer Algorithm

接头(建筑物) 帧(网络) 损伤控制 结构工程 鉴定(生物学) 计算机科学 算法 力矩(物理) 工程类 植物 经典力学 电信 生物 海洋学 物理 地质学
作者
Seyed Bahram Beheshti Aval,Pooya Mohebian
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:22 (05) 被引量:11
标识
DOI:10.1142/s0219455422500560
摘要

Beam-column joints are responsible for maintaining the integrity and stability of frame structures, and any damage to these critical components can endanger the overall safety and reliability of the structure. Hence, early detection of structural joint damage is of paramount importance. However, most of the available structural damage identification methods focus on identifying damage in structural members, and relatively fewer methods have been developed so far for assessing damage in structural joints. In view of this, the present study proposes a new two-stage method for joint damage identification of frame structures. In the first stage, an efficient damage indicator, called residual moment-based joint damage index (RMBJDI), is developed and applied to detect the location of potentially damaged joints. This damage indicator can help to reduce the number of involved damage variables by excluding healthy joints from the problem. In the second stage, the reduced dimension damage identification problem is formulated as an optimization problem and is further tackled by employing a robust meta-heuristic algorithm, namely equilibrium optimizer (EO), to determine the damage severity of suspected damaged joints. In order to assess the capability and effectiveness of the presented joint damage identification method, two numerical examples of frame structures are conducted under both noise-free and noisy conditions. The results demonstrate that the proposed two-stage method, which integrates RMBJDI with EO, is a highly accurate and powerful tool for localizing and quantifying the joint damage in frame structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形的铭完成签到,获得积分10
刚刚
刚刚
lhy完成签到,获得积分10
刚刚
标致一手完成签到 ,获得积分10
刚刚
聂学雨发布了新的文献求助10
1秒前
2秒前
Eatch应助sun采纳,获得10
2秒前
王小明发布了新的文献求助10
2秒前
一人一般完成签到,获得积分10
2秒前
wang研通完成签到,获得积分10
2秒前
柳博超发布了新的文献求助10
3秒前
背后笑白完成签到,获得积分10
3秒前
3秒前
故意的曼荷完成签到,获得积分10
3秒前
4秒前
风登楼完成签到,获得积分10
4秒前
煎饼果子完成签到,获得积分10
5秒前
5秒前
kittency完成签到 ,获得积分10
5秒前
小郭不洗锅完成签到,获得积分10
5秒前
wanci应助jia采纳,获得10
5秒前
标致的问晴完成签到,获得积分10
5秒前
三川故里完成签到,获得积分10
6秒前
OO圈圈发布了新的文献求助10
6秒前
liuwen_711发布了新的文献求助10
6秒前
大个应助hzhang0807采纳,获得10
6秒前
Owen应助三千年的成长采纳,获得10
8秒前
xiong完成签到,获得积分10
8秒前
陈冲完成签到,获得积分10
9秒前
anran发布了新的文献求助10
9秒前
舒心谷雪完成签到 ,获得积分10
9秒前
9秒前
9秒前
一个正经人完成签到,获得积分10
9秒前
温连虎完成签到,获得积分10
10秒前
FashionBoy应助iufan采纳,获得10
11秒前
Kikisong完成签到,获得积分10
12秒前
兮颜完成签到 ,获得积分10
13秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134416
求助须知:如何正确求助?哪些是违规求助? 2785328
关于积分的说明 7771336
捐赠科研通 2440922
什么是DOI,文献DOI怎么找? 1297593
科研通“疑难数据库(出版商)”最低求助积分说明 625007
版权声明 600792