Ultrathin double network-coated hollow fiber membrane designed for water vapor separation

渗透 聚砜 渗透 水蒸气 聚丙烯酸 相对湿度 高分子化学 化学工程 化学 选择性 蒸汽压 纤维 材料科学 聚合物 有机化学 生物化学 物理 工程类 催化作用 热力学
作者
Ali M. Abou-Elanwar,Yogita M. Shirke,Seong‐Jun Cho,Sung-Kyu Kwon,Won-Kil Choi,Seong Uk Hong,Hyung Keun Lee,Jae-Deok Jeon
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:287: 120586-120586 被引量:8
标识
DOI:10.1016/j.seppur.2022.120586
摘要

Here we present, for the first time, ultrathin double network (DN)-coated hollow fiber membranes to improve water vapor permeation of polymeric membranes. In this study, we investigated two different DN systems. The hyperbranched polyethyleneimine (HPEI) and its quaternized HPEI form (QHPEI) represented the first network in both systems, while the second network was based on quaternized polyacrylic acid (QACC) and quaternized poly (2-acrylamido-2-methyl-1-propanesulfonic acid) (QAMPS). Various analysis techniques were used to characterize QHPEI and DN-coated polysulfone (PSf) membranes. Water vapor permeation experiments were conducted at QHPEI concentration in total precursor (QHPEI and HPEI) and different operating parameters. The incorporation of a higher QHPEI amount improved the hydrophilicity and water vapor performance of DN-coated membranes. QAAC-100 and QAMPS-100 exhibited the highest performance in each system; however, QAMPS showed higher water vapor permeance (P) and lower selectivity (S). This behavior was attributed to the presence of a bulkier pendant group (i.e. less compact), higher hydrophilicity, and a thinner membrane in QAMPS compared to QAAC. The increment in relative humidity (RH) illustrated a positive effect on the membrane performance, while both temperature and pressure illustrated a negative impact. The best performance obtained by QAAC-100 (S = 511, P = 5825 GPU) and QAMPS-100 (S = 422, P = 8115 GPU) was achieved at 1 bar as feed pressure, 75% as RH, 35 °C as operating temperature, and 1 L/min as feed gas flow rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dsfsd发布了新的文献求助10
刚刚
NexusExplorer应助黄伟凯采纳,获得10
1秒前
1秒前
李健应助ayayaya采纳,获得10
1秒前
1秒前
1秒前
纯真晓灵发布了新的文献求助10
1秒前
科研通AI6应助1397采纳,获得10
1秒前
2秒前
祁无敌完成签到,获得积分0
2秒前
2秒前
hyacinth11111完成签到,获得积分10
2秒前
小豆发布了新的文献求助10
2秒前
3秒前
3秒前
葵屿发布了新的文献求助10
3秒前
lingmuhuahua发布了新的文献求助10
3秒前
田様应助顺利毕业采纳,获得10
3秒前
3秒前
3秒前
崔彤完成签到,获得积分10
4秒前
SciGPT应助无名采纳,获得10
4秒前
4秒前
4秒前
cy123发布了新的文献求助10
5秒前
雍以菱应助张开心采纳,获得20
5秒前
无花果应助jingle采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
orixero应助iii采纳,获得10
7秒前
YU完成签到,获得积分10
7秒前
7秒前
直率的忆南完成签到,获得积分10
7秒前
wanci应助宋宋采纳,获得10
8秒前
谨慎凡柔发布了新的文献求助10
8秒前
8秒前
充电宝应助09chenyun采纳,获得10
9秒前
9秒前
6666666666发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616