Ultrathin double network-coated hollow fiber membrane designed for water vapor separation

渗透 聚砜 渗透 水蒸气 聚丙烯酸 相对湿度 高分子化学 化学工程 化学 选择性 蒸汽压 纤维 材料科学 聚合物 有机化学 生物化学 物理 工程类 催化作用 热力学
作者
Ali M. Abou-Elanwar,Yogita M. Shirke,Seong‐Jun Cho,Sung-Kyu Kwon,Won-Kil Choi,Seong Uk Hong,Hyung Keun Lee,Jae-Deok Jeon
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:287: 120586-120586 被引量:8
标识
DOI:10.1016/j.seppur.2022.120586
摘要

Here we present, for the first time, ultrathin double network (DN)-coated hollow fiber membranes to improve water vapor permeation of polymeric membranes. In this study, we investigated two different DN systems. The hyperbranched polyethyleneimine (HPEI) and its quaternized HPEI form (QHPEI) represented the first network in both systems, while the second network was based on quaternized polyacrylic acid (QACC) and quaternized poly (2-acrylamido-2-methyl-1-propanesulfonic acid) (QAMPS). Various analysis techniques were used to characterize QHPEI and DN-coated polysulfone (PSf) membranes. Water vapor permeation experiments were conducted at QHPEI concentration in total precursor (QHPEI and HPEI) and different operating parameters. The incorporation of a higher QHPEI amount improved the hydrophilicity and water vapor performance of DN-coated membranes. QAAC-100 and QAMPS-100 exhibited the highest performance in each system; however, QAMPS showed higher water vapor permeance (P) and lower selectivity (S). This behavior was attributed to the presence of a bulkier pendant group (i.e. less compact), higher hydrophilicity, and a thinner membrane in QAMPS compared to QAAC. The increment in relative humidity (RH) illustrated a positive effect on the membrane performance, while both temperature and pressure illustrated a negative impact. The best performance obtained by QAAC-100 (S = 511, P = 5825 GPU) and QAMPS-100 (S = 422, P = 8115 GPU) was achieved at 1 bar as feed pressure, 75% as RH, 35 °C as operating temperature, and 1 L/min as feed gas flow rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助自由寻冬采纳,获得10
刚刚
1秒前
1秒前
Yu发布了新的文献求助10
1秒前
3秒前
鳗鱼鞋垫发布了新的文献求助10
3秒前
儒雅晓霜完成签到,获得积分10
3秒前
4秒前
5秒前
时尚觅松发布了新的文献求助10
5秒前
zzz完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
112450195完成签到,获得积分10
6秒前
低调小狗发布了新的文献求助10
6秒前
as_eichi完成签到,获得积分10
7秒前
充电宝应助小池采纳,获得10
7秒前
ding应助贰什柒采纳,获得10
7秒前
要减肥的鹤完成签到,获得积分10
7秒前
小蘑菇应助li采纳,获得10
8秒前
8秒前
9秒前
kkk完成签到,获得积分10
9秒前
9秒前
9秒前
李子完成签到,获得积分10
10秒前
10秒前
善学以致用应助早日毕业采纳,获得10
10秒前
小耳朵完成签到,获得积分10
10秒前
孔大发布了新的文献求助10
10秒前
123发布了新的文献求助10
10秒前
黄宇航完成签到,获得积分10
11秒前
yiyi完成签到,获得积分20
11秒前
珊珊完成签到,获得积分10
11秒前
11秒前
ulung完成签到 ,获得积分10
12秒前
12秒前
wkjfh应助研友_Ljb0qL采纳,获得10
12秒前
科研通AI2S应助是小可爱呀采纳,获得50
12秒前
QLLW应助zj采纳,获得10
12秒前
QLLW应助zj采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653573
求助须知:如何正确求助?哪些是违规求助? 4790162
关于积分的说明 15064753
捐赠科研通 4812180
什么是DOI,文献DOI怎么找? 2574341
邀请新用户注册赠送积分活动 1529955
关于科研通互助平台的介绍 1488680