清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Instrumental Variable Estimation of Causal Risk Ratios and Causal Odds Ratios in Mendelian Randomization Analyses

孟德尔随机化 估计员 统计 工具变量 优势比 计量经济学 背景(考古学) 置信区间 体质指数 数学 人口学 点估计 因果推理 医学 内科学 地理 社会学 基因型 考古 化学 基因 生物化学 遗传变异
作者
Tom Palmer,Jonathan A C Sterne,Roger Harbord,Debbie A. Lawlor,Nuala A. Sheehan,Meng Sha,Raquel Granell,George Davey Smith,Vanessa Didelez
出处
期刊:American Journal of Epidemiology [Oxford University Press]
卷期号:173 (12): 1392-1403 被引量:274
标识
DOI:10.1093/aje/kwr026
摘要

In this paper, the authors describe different instrumental variable (IV) estimators of causal risk ratios and odds ratios with particular attention to methods that can handle continuously measured exposures. The authors present this discussion in the context of a Mendelian randomization analysis of the effect of body mass index (BMI; weight (kg)/height (m)2) on the risk of asthma at age 7 years (Avon Longitudinal Study of Parents and Children, 1991–1992). The authors show that the multiplicative structural mean model (MSMM) and the multiplicative generalized method of moments (MGMM) estimator produce identical estimates of the causal risk ratio. In the example, MSMM and MGMM estimates suggested an inverse relation between BMI and asthma but other IV estimates suggested a positive relation, although all estimates had wide confidence intervals. An interaction between the associations of BMI and fat mass and obesity-associated (FTO) genotype with asthma explained the different directions of the different estimates, and a simulation study supported the observation that MSMM/MGMM estimators are negatively correlated with the other estimators when such an interaction is present. The authors conclude that point estimates from various IV methods can differ in practical applications. Based on the theoretical properties of the estimators, structural mean models make weaker assumptions than other IV estimators and can therefore be expected to be consistent in a wider range of situations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
kmning发布了新的文献求助10
8秒前
风停了完成签到,获得积分10
11秒前
charih完成签到 ,获得积分10
13秒前
18秒前
Akim应助kmning采纳,获得10
22秒前
量子星尘发布了新的文献求助10
35秒前
科研通AI6应助Criminology34采纳,获得100
1分钟前
1分钟前
herococa应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
后陡门爱神完成签到 ,获得积分10
2分钟前
科研通AI6应助Criminology34采纳,获得100
2分钟前
勤劳的颤完成签到 ,获得积分10
2分钟前
滕皓轩完成签到 ,获得积分10
2分钟前
Ava应助Kyrie采纳,获得10
3分钟前
某奈在看海完成签到,获得积分10
3分钟前
3分钟前
orixero应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
莫莫完成签到 ,获得积分10
3分钟前
Kyrie完成签到,获得积分10
3分钟前
研友_8WOBM8发布了新的文献求助10
4分钟前
4分钟前
冷傲半邪完成签到,获得积分10
5分钟前
yyds给yyds的求助进行了留言
5分钟前
研友_nxw2xL完成签到,获得积分10
5分钟前
如歌完成签到,获得积分10
5分钟前
5分钟前
烂漫的绿茶完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
yyds发布了新的文献求助30
6分钟前
量子星尘发布了新的文献求助10
6分钟前
蝎子莱莱xth完成签到,获得积分10
7分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
7分钟前
Square完成签到,获得积分10
7分钟前
BowieHuang应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658233
求助须知:如何正确求助?哪些是违规求助? 4818796
关于积分的说明 15081057
捐赠科研通 4816735
什么是DOI,文献DOI怎么找? 2577564
邀请新用户注册赠送积分活动 1532491
关于科研通互助平台的介绍 1491120