化学工程
聚合物
电解质
分离器(采油)
复合材料
电化学储能
作者
Chuan Xia,Wei Chen,Xianbin Wang,Mohamed Nejib Hedhili,Nini Wei,Husam N. Alshareef
标识
DOI:10.1002/aenm.201401805
摘要
Conducting polymers such as polyaniline (PAni) show a great potential as pseudocapacitor materials for electrochemical energy storage applications. Yet, the cycling instability of PAni resulting from structural alteration is a major hurdle to its commercial application. Here, the development of nanostructured PAni–RuO 2 core–shell arrays as electrodes for highly stable pseudocapacitors with excellent energy storage performance is reported. A thin layer of RuO 2 grown by atomic layer deposition (ALD) on PAni nanofibers plays a crucial role in stabilizing the PAni pseudocapacitors and improving their energy density. The pseudocapacitors, which are based on optimized PAni–RuO 2 core–shell nanostructured electrodes, exhibit very high specific capacitance (710 F g −1 at 5 mV s −1 ) and power density (42.2 kW kg −1 ) at an energy density of 10 Wh kg −1 . Furthermore, they exhibit remarkable capacitance retention of ≈88% after 10 000 cycles at very high current density of 20 A g −1 , superior to that of pristine PAni‐based pseudocapacitors. This prominently enhanced electrochemical stability successfully demonstrates the buffering effect of ALD coating on PAni, which provides a new approach for the preparation of metal‐oxide/conducting polymer hybrid electrodes with excellent electrochemical performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI