SMOTE: Synthetic Minority Over-sampling Technique

过采样 分类器(UML) 朴素贝叶斯分类器 人工智能 计算机科学 接收机工作特性 先验概率 班级(哲学) 凸壳 数学 机器学习 采样(信号处理) 贝叶斯概率 模式识别(心理学) 统计 支持向量机 正多边形 带宽(计算) 滤波器(信号处理) 计算机网络 几何学 计算机视觉
作者
Nitesh V. Chawla,Kevin W. Bowyer,Lawrence Hall,W. Philip Kegelmeyer
出处
期刊:Journal of Artificial Intelligence Research [AI Access Foundation]
卷期号:16: 321-357 被引量:25301
标识
DOI:10.1613/jair.953
摘要

An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特乘风完成签到,获得积分10
1秒前
含糊的代丝完成签到 ,获得积分10
4秒前
朴素的紫安完成签到 ,获得积分10
5秒前
yyj完成签到,获得积分10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
君临完成签到,获得积分10
7秒前
林早上完成签到,获得积分20
7秒前
xiu完成签到 ,获得积分10
8秒前
栗爷完成签到,获得积分0
8秒前
深年完成签到,获得积分10
9秒前
求知若渴完成签到,获得积分0
9秒前
所所应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得30
9秒前
李爱国应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
10秒前
一团小煤球完成签到,获得积分10
10秒前
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
卡乐瑞咩吹可完成签到,获得积分10
10秒前
田様应助科研通管家采纳,获得10
10秒前
苦咖啡行僧完成签到 ,获得积分10
10秒前
鹤鸣完成签到,获得积分10
11秒前
守望阳光1完成签到,获得积分10
11秒前
正直天空发布了新的文献求助10
11秒前
13秒前
YU发布了新的文献求助10
13秒前
大方元风完成签到 ,获得积分10
13秒前
隐形曼青应助自觉寒梦采纳,获得10
14秒前
ntxlks完成签到,获得积分10
14秒前
祝雲完成签到,获得积分10
14秒前
Spice完成签到 ,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029