Models for closed-loop supply chain with trade-ins

供应链 利润(经济学) 闭环 业务 数据收集 产品(数学) 计算机科学 产业组织 运筹学 微观经济学 经济 营销 数学 工程类 控制工程 统计 几何学
作者
Zhaowei Miao,Ke Fu,Zhiqiang Xia,Yu Wang
出处
期刊:Omega [Elsevier]
卷期号:66: 308-326 被引量:157
标识
DOI:10.1016/j.omega.2015.11.001
摘要

Three kinds of decision models for closed-loop supply chain (CLSC) with trade-ins are developed in this paper, including the centralized collection (Model C), the retailer collection (Model R), and the manufacturer collection (Model M). By analyzing these models, we argue that there are three types of optimal collection strategies, namely, no collection, partial collection, and full collection. We provide conditions under which one of these three collection strategies is optimal for different supply chain models. By comparing the impact of trade-ins on these different supply chain models, we find that only when the direct net value of a used product derived from the trade-ins for the whole CLSC system including the consumers is high enough can trade-in strategy be adopted to stimulate consumer demand and improve the manufacturer׳s and retailer׳s profit. Based on the life-cycle assessment method, we find that when the marginal effect of the product on environment in the continue-to-use phase is more significant than in other phases, trade-ins can promote the environmental performance of the CLSC system. Further, by comparing the optimal solutions for the different models, we find that one collection model may dominate the others in terms of the economic performance of the involved parties. Specifically, Model M dominates Model R in terms of the profits of the manufacturer and the profits of the whole supply chain; Model R dominates Model M in terms of retailer׳s profit; and Model R dominates all other models in terms of environmental performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qianqianaaa完成签到,获得积分20
1秒前
二马2026关注了科研通微信公众号
1秒前
nn发布了新的文献求助10
2秒前
孤央完成签到 ,获得积分10
3秒前
危机的芝麻完成签到,获得积分10
4秒前
5秒前
6秒前
7秒前
8秒前
科研通AI6应助沐沐采纳,获得10
9秒前
Kka完成签到 ,获得积分10
9秒前
10秒前
longer发布了新的文献求助10
10秒前
11秒前
Yada完成签到,获得积分20
11秒前
11秒前
594778089发布了新的文献求助10
12秒前
FashionBoy应助niko采纳,获得10
12秒前
bkagyin应助niko采纳,获得10
12秒前
完美世界应助niko采纳,获得10
12秒前
传奇3应助niko采纳,获得10
12秒前
bkagyin应助niko采纳,获得10
12秒前
科目三应助niko采纳,获得10
12秒前
科研通AI6应助niko采纳,获得10
12秒前
思源应助niko采纳,获得10
12秒前
我是老大应助niko采纳,获得10
12秒前
汉堡包应助niko采纳,获得10
12秒前
学术pig发布了新的文献求助10
12秒前
13秒前
噜啦啦完成签到,获得积分10
13秒前
13秒前
NexusExplorer应助gu123采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
同瓜不同命完成签到,获得积分10
15秒前
沙彬发布了新的文献求助10
16秒前
bmhsys发布了新的文献求助10
17秒前
邹嘉锋完成签到,获得积分10
17秒前
研途牛马发布了新的文献求助10
17秒前
学术pig完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525160
求助须知:如何正确求助?哪些是违规求助? 4615470
关于积分的说明 14548546
捐赠科研通 4553537
什么是DOI,文献DOI怎么找? 2495334
邀请新用户注册赠送积分活动 1475908
关于科研通互助平台的介绍 1447670