兴奋毒性
SOD1
谷氨酸受体
分子生物学
超氧化物歧化酶
化学
生物
细胞生物学
生物化学
氧化应激
受体
作者
Jung‐Soo Pyo,Young San Ko,Woo Ho Kim,Manho Kim,Kwang‐Woo Lee,Seon Young Nam,Hee Yong Chung,Sung Jin Cho,Tai‐Kyoung Baik,Byung Lan Lee
摘要
Abstract Mutations in the superoxide dismutase 1 (SOD1) gene are linked to glutamate excitotoxicity in familial amyotrophic lateral sclerosis (fALS), but the underlying mechanism remains unclear. We investigated whether nuclear factor‐κB (NF‐κB) activation is involved in glutamate excitotoxicity by using motor neuron–neuroblastoma hybrid cells that expressed a mutant (G93A) SOD1 (mtSOD1) or wild‐type SOD1 (wtSOD1). MtSOD1 cells were more vulnerable to glutamate excitotoxicity than wtSOD1 cells and showed higher NF‐κB activity, higher nuclear cRel expression, and lower nuclear RelA expression under basal conditions. Glutamate treatment increased NF‐κB activation along with nuclear expressions of RelA and cRel in wtSOD1 cells but induced only weak nuclear RelA expression in mtSOD1 cells. Suppression of NF‐κB activation using transfection of the superrepressive mutant form of IκBα (mIκBα) inhibited nuclear RelA expression in both types of SOD1 cells, which increased glutamate excitotoxicity in wtSOD1 cells but not in mtSOD1 cells. Furthermore, immunohistochemistry confirmed stronger RelA immunoreactivity in the nuclei of motor neurons of spinal cord in wild‐type SOD1 transgenic mice than in those in SOD1 G93A transgenic mice. In addition, we found that glutamate treatment decreased XIAP expression and increased caspase‐3 activity in mtSOD1 cells and mIκBα‐overexpressing wtSOD1 cells. Our results suggest that glutamate excitotoxicity in motor neurons of SOD1‐linked fALS is attributable, at least in part, to the impairment of IκBα‐dependent RelA activation and subsequent apoptosis mediated by XIAP inhibition and caspase‐3 activation. © 2010 Wiley‐Liss, Inc.
科研通智能强力驱动
Strongly Powered by AbleSci AI