避碰
线性二次调节器
运动规划
计算机科学
模型预测控制
迭代法
非线性系统
控制理论(社会学)
弹道
最优控制
二次方程
正多边形
数学优化
机器人
车辆动力学
控制(管理)
碰撞
工程类
数学
人工智能
物理
计算机安全
量子力学
天文
汽车工程
几何学
作者
Jianyu Chen,Wei Zhan,Masayoshi Tomizuka
标识
DOI:10.1109/itsc.2017.8317745
摘要
There exist a lot of challenges in trajectory planning for autonomous driving: 1) Needs of both spatial and temporal planning for highly dynamic environments; 2) Nonlinear vehicle models and non-convex collision avoidance constraints. 3) High computational efficiency for real-time implementation. Iterative Linear Quadratic Regulator (ILQR) is an algorithm which solves predictive optimal control problem with nonlinear system very efficiently. However, it can not deal with constraints. In this paper, the Constrained Iterative LQR (CILQR) is proposed to handle the constraints in ILQR. Then an on road driving problem is formulated. Simulation case studies show the capability of the CILQR algorithm to solve the on road driving motion planning problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI