A computational method for the design of nested proteins by loop‐directed domain insertion

领域(数学分析) 计算机科学 循环(图论) 嵌套循环联接 计算生物学 并行计算 生物 数学 组合数学 数学分析
作者
Kristin Blacklock,Lu Yang,Vikram Khipple Mulligan,Sagar D. Khare
出处
期刊:Proteins [Wiley]
卷期号:86 (3): 354-369 被引量:4
标识
DOI:10.1002/prot.25445
摘要

Abstract The computational design of novel nested proteins—in which the primary structure of one protein domain (insert) is flanked by the primary structure segments of another (parent)—would enable the generation of multifunctional proteins. Here we present a new algorithm, called Loop‐Directed Domain Insertion (LooDo), implemented within the Rosetta software suite, for the purpose of designing nested protein domain combinations connected by flexible linker regions. Conformational space for the insert domain is sampled using large libraries of linker fragments for linker‐to‐parent domain superimposition followed by insert‐to‐linker superimposition. The relative positioning of the two domains (treated as rigid bodies) is sampled efficiently by a grid‐based, mutual placement compatibility search. The conformations of the loop residues, and the identities of loop as well as interface residues, are simultaneously optimized using a generalized kinematic loop closure algorithm and Rosetta EnzymeDesign, respectively, to minimize interface energy. The algorithm was found to consistently sample near‐native conformations and interface sequences for a benchmark set of structurally similar but functionally divergent domain‐inserted enzymes from the α/β hydrolase superfamily, and discriminates well between native and nonnative conformations and sequences, although loop conformations tended to deviate from the native conformations. Furthermore, in cross‐domain placement tests, native insert‐parent domain combinations were ranked as the best‐scoring structures compared to nonnative domain combinations. This algorithm should be broadly applicable to the design of multi‐domain protein complexes with any combination of inserted or tandem domain connections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摆烂王子发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
5秒前
小鹿发布了新的文献求助10
6秒前
个性的振家完成签到,获得积分10
6秒前
栀蓝完成签到 ,获得积分10
6秒前
gdsfgdf完成签到 ,获得积分10
6秒前
哈哈2022完成签到,获得积分10
7秒前
8秒前
灵巧的熊猫完成签到,获得积分10
8秒前
9秒前
欢呼的茗茗完成签到 ,获得积分0
9秒前
英姑应助mhlxxx采纳,获得10
9秒前
9秒前
chunwang完成签到 ,获得积分10
10秒前
Leah发布了新的文献求助10
10秒前
康神完成签到,获得积分10
11秒前
11秒前
yahong发布了新的文献求助10
11秒前
希望天下0贩的0应助Cynthia采纳,获得10
11秒前
无辜的夏兰完成签到,获得积分10
12秒前
12秒前
星辰大海应助小鹿采纳,获得10
12秒前
开心电源完成签到,获得积分10
12秒前
Andy发布了新的文献求助10
14秒前
爱的看到发布了新的文献求助10
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
科研通AI2S应助Georges-09采纳,获得10
17秒前
Merciful发布了新的文献求助10
18秒前
18秒前
Eureka发布了新的文献求助10
18秒前
19秒前
19秒前
啦啦啦小困困完成签到,获得积分10
20秒前
vv发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419355
求助须知:如何正确求助?哪些是违规求助? 4534651
关于积分的说明 14146107
捐赠科研通 4451251
什么是DOI,文献DOI怎么找? 2441667
邀请新用户注册赠送积分活动 1433233
关于科研通互助平台的介绍 1410533