A computational method for the design of nested proteins by loop‐directed domain insertion

领域(数学分析) 计算机科学 循环(图论) 嵌套循环联接 计算生物学 并行计算 生物 数学 组合数学 数学分析
作者
Kristin Blacklock,Lu Yang,Vikram Khipple Mulligan,Sagar D. Khare
出处
期刊:Proteins [Wiley]
卷期号:86 (3): 354-369 被引量:4
标识
DOI:10.1002/prot.25445
摘要

Abstract The computational design of novel nested proteins—in which the primary structure of one protein domain (insert) is flanked by the primary structure segments of another (parent)—would enable the generation of multifunctional proteins. Here we present a new algorithm, called Loop‐Directed Domain Insertion (LooDo), implemented within the Rosetta software suite, for the purpose of designing nested protein domain combinations connected by flexible linker regions. Conformational space for the insert domain is sampled using large libraries of linker fragments for linker‐to‐parent domain superimposition followed by insert‐to‐linker superimposition. The relative positioning of the two domains (treated as rigid bodies) is sampled efficiently by a grid‐based, mutual placement compatibility search. The conformations of the loop residues, and the identities of loop as well as interface residues, are simultaneously optimized using a generalized kinematic loop closure algorithm and Rosetta EnzymeDesign, respectively, to minimize interface energy. The algorithm was found to consistently sample near‐native conformations and interface sequences for a benchmark set of structurally similar but functionally divergent domain‐inserted enzymes from the α/β hydrolase superfamily, and discriminates well between native and nonnative conformations and sequences, although loop conformations tended to deviate from the native conformations. Furthermore, in cross‐domain placement tests, native insert‐parent domain combinations were ranked as the best‐scoring structures compared to nonnative domain combinations. This algorithm should be broadly applicable to the design of multi‐domain protein complexes with any combination of inserted or tandem domain connections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王丹丹发布了新的文献求助10
2秒前
打打应助dian采纳,获得10
2秒前
2秒前
AN关闭了AN文献求助
2秒前
whjbb完成签到,获得积分20
3秒前
3秒前
打打应助micexily采纳,获得10
4秒前
Sean完成签到,获得积分10
4秒前
科研通AI6应助小巧酸奶采纳,获得10
5秒前
xiuT完成签到,获得积分10
5秒前
王一正完成签到,获得积分10
6秒前
高级牛马完成签到 ,获得积分10
6秒前
6秒前
6秒前
科研互通完成签到,获得积分10
7秒前
huhdcid发布了新的文献求助10
8秒前
狗大王完成签到,获得积分10
8秒前
9秒前
9秒前
Sean发布了新的文献求助10
9秒前
10秒前
祝佳其完成签到 ,获得积分10
10秒前
11秒前
12秒前
Lynne完成签到,获得积分10
13秒前
孔孔发布了新的文献求助10
14秒前
哈哈哈发布了新的文献求助30
14秒前
深情安青应助程小小采纳,获得10
15秒前
小靳完成签到,获得积分10
15秒前
明理的道天完成签到 ,获得积分10
16秒前
16秒前
sfafasfsdf完成签到,获得积分10
17秒前
17秒前
eo发布了新的文献求助10
18秒前
小靳发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
领导范儿应助zgl0806采纳,获得10
20秒前
小米发布了新的文献求助10
20秒前
桐桐应助科研通管家采纳,获得20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484152
求助须知:如何正确求助?哪些是违规求助? 4584446
关于积分的说明 14397956
捐赠科研通 4514459
什么是DOI,文献DOI怎么找? 2474010
邀请新用户注册赠送积分活动 1459963
关于科研通互助平台的介绍 1433365