A computational method for the design of nested proteins by loop‐directed domain insertion

领域(数学分析) 计算机科学 循环(图论) 嵌套循环联接 计算生物学 并行计算 生物 数学 组合数学 数学分析
作者
Kristin Blacklock,Lu Yang,Vikram Khipple Mulligan,Sagar D. Khare
出处
期刊:Proteins [Wiley]
卷期号:86 (3): 354-369 被引量:4
标识
DOI:10.1002/prot.25445
摘要

Abstract The computational design of novel nested proteins—in which the primary structure of one protein domain (insert) is flanked by the primary structure segments of another (parent)—would enable the generation of multifunctional proteins. Here we present a new algorithm, called Loop‐Directed Domain Insertion (LooDo), implemented within the Rosetta software suite, for the purpose of designing nested protein domain combinations connected by flexible linker regions. Conformational space for the insert domain is sampled using large libraries of linker fragments for linker‐to‐parent domain superimposition followed by insert‐to‐linker superimposition. The relative positioning of the two domains (treated as rigid bodies) is sampled efficiently by a grid‐based, mutual placement compatibility search. The conformations of the loop residues, and the identities of loop as well as interface residues, are simultaneously optimized using a generalized kinematic loop closure algorithm and Rosetta EnzymeDesign, respectively, to minimize interface energy. The algorithm was found to consistently sample near‐native conformations and interface sequences for a benchmark set of structurally similar but functionally divergent domain‐inserted enzymes from the α/β hydrolase superfamily, and discriminates well between native and nonnative conformations and sequences, although loop conformations tended to deviate from the native conformations. Furthermore, in cross‐domain placement tests, native insert‐parent domain combinations were ranked as the best‐scoring structures compared to nonnative domain combinations. This algorithm should be broadly applicable to the design of multi‐domain protein complexes with any combination of inserted or tandem domain connections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
124应助五水硫酸铜采纳,获得10
刚刚
欣喜的素完成签到,获得积分10
刚刚
快中文章啊完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
jiang发布了新的文献求助100
2秒前
Clarie完成签到,获得积分10
2秒前
科研通AI6应助zhouzhou采纳,获得10
2秒前
ceng发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
俗人完成签到,获得积分10
3秒前
英姑应助poiu采纳,获得10
3秒前
4秒前
孟艳艳完成签到,获得积分20
4秒前
5秒前
冷艳的白竹完成签到,获得积分10
5秒前
cc发布了新的文献求助20
5秒前
5秒前
sa1t完成签到,获得积分10
5秒前
Dong发布了新的文献求助10
5秒前
G蛋白偶联发布了新的文献求助30
5秒前
懦弱的安珊完成签到,获得积分10
6秒前
XZZ完成签到 ,获得积分10
6秒前
甘妮鑫发布了新的文献求助60
6秒前
6秒前
Jojo完成签到,获得积分10
7秒前
贰壹发布了新的文献求助10
7秒前
wanci应助Helen采纳,获得10
7秒前
7秒前
7秒前
黑犬发布了新的文献求助10
7秒前
8秒前
月之璇发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624710
求助须知:如何正确求助?哪些是违规求助? 4710500
关于积分的说明 14951127
捐赠科研通 4778615
什么是DOI,文献DOI怎么找? 2553367
邀请新用户注册赠送积分活动 1515328
关于科研通互助平台的介绍 1475603