A computational method for the design of nested proteins by loop‐directed domain insertion

领域(数学分析) 计算机科学 循环(图论) 嵌套循环联接 计算生物学 并行计算 生物 数学 组合数学 数学分析
作者
Kristin Blacklock,Lu Yang,Vikram Khipple Mulligan,Sagar D. Khare
出处
期刊:Proteins [Wiley]
卷期号:86 (3): 354-369 被引量:4
标识
DOI:10.1002/prot.25445
摘要

Abstract The computational design of novel nested proteins—in which the primary structure of one protein domain (insert) is flanked by the primary structure segments of another (parent)—would enable the generation of multifunctional proteins. Here we present a new algorithm, called Loop‐Directed Domain Insertion (LooDo), implemented within the Rosetta software suite, for the purpose of designing nested protein domain combinations connected by flexible linker regions. Conformational space for the insert domain is sampled using large libraries of linker fragments for linker‐to‐parent domain superimposition followed by insert‐to‐linker superimposition. The relative positioning of the two domains (treated as rigid bodies) is sampled efficiently by a grid‐based, mutual placement compatibility search. The conformations of the loop residues, and the identities of loop as well as interface residues, are simultaneously optimized using a generalized kinematic loop closure algorithm and Rosetta EnzymeDesign, respectively, to minimize interface energy. The algorithm was found to consistently sample near‐native conformations and interface sequences for a benchmark set of structurally similar but functionally divergent domain‐inserted enzymes from the α/β hydrolase superfamily, and discriminates well between native and nonnative conformations and sequences, although loop conformations tended to deviate from the native conformations. Furthermore, in cross‐domain placement tests, native insert‐parent domain combinations were ranked as the best‐scoring structures compared to nonnative domain combinations. This algorithm should be broadly applicable to the design of multi‐domain protein complexes with any combination of inserted or tandem domain connections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可乐龙猫发布了新的文献求助10
刚刚
刚刚
墓轩发布了新的文献求助10
1秒前
ZhaoJiaheng完成签到,获得积分20
1秒前
韩梅完成签到,获得积分20
1秒前
1秒前
1秒前
临风完成签到,获得积分10
2秒前
houruibut发布了新的文献求助10
2秒前
2秒前
2秒前
友好汪完成签到,获得积分10
2秒前
llll发布了新的文献求助10
2秒前
outlaw_chen完成签到,获得积分10
2秒前
冰选若南完成签到,获得积分20
2秒前
qiqi完成签到 ,获得积分10
3秒前
3秒前
珞咔完成签到,获得积分20
3秒前
3秒前
Jasper应助Aurora采纳,获得10
3秒前
星辰大海应助逆风起笔采纳,获得10
3秒前
yulong发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
丘比特应助syy080837采纳,获得30
4秒前
4秒前
传奇3应助Wqhao采纳,获得10
5秒前
6秒前
6秒前
zhihaiyu发布了新的文献求助10
6秒前
学习完成签到 ,获得积分10
6秒前
CodeCraft应助四季安采纳,获得10
6秒前
斯文败类应助燕子采纳,获得10
7秒前
宁子发布了新的文献求助10
7秒前
烂漫紫易完成签到,获得积分10
7秒前
LLL发布了新的文献求助10
8秒前
小王完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667738
求助须知:如何正确求助?哪些是违规求助? 4887401
关于积分的说明 15121482
捐赠科研通 4826512
什么是DOI,文献DOI怎么找? 2584135
邀请新用户注册赠送积分活动 1538152
关于科研通互助平台的介绍 1496238