Decision tree analysis in subarachnoid hemorrhage: prediction of outcome parameters during the course of aneurysmal subarachnoid hemorrhage using decision tree analysis

医学 蛛网膜下腔出血 格拉斯哥结局量表 决策树 队列 接收机工作特性 内科学 外科 机器学习 格拉斯哥昏迷指数 计算机科学
作者
Isabel C. Hostettler,Carl Muroi,Johannes Richter,Josef Schmid,Marian C. Neidert,Martin Seule,Oliver Boss,Athina Pangalu,Menno R. Germans,Emanuela Keller
出处
期刊:Journal of Neurosurgery [American Association of Neurological Surgeons]
卷期号:129 (6): 1499-1510 被引量:35
标识
DOI:10.3171/2017.7.jns17677
摘要

OBJECTIVE The aim of this study was to create prediction models for outcome parameters by decision tree analysis based on clinical and laboratory data in patients with aneurysmal subarachnoid hemorrhage (aSAH). METHODS The database consisted of clinical and laboratory parameters of 548 patients with aSAH who were admitted to the Neurocritical Care Unit, University Hospital Zurich. To examine the model performance, the cohort was randomly divided into a derivation cohort (60% [n = 329]; training data set) and a validation cohort (40% [n = 219]; test data set). The classification and regression tree prediction algorithm was applied to predict death, functional outcome, and ventriculoperitoneal (VP) shunt dependency. Chi-square automatic interaction detection was applied to predict delayed cerebral infarction on days 1, 3, and 7. RESULTS The overall mortality was 18.4%. The accuracy of the decision tree models was good for survival on day 1 and favorable functional outcome at all time points, with a difference between the training and test data sets of < 5%. Prediction accuracy for survival on day 1 was 75.2%. The most important differentiating factor was the interleukin-6 (IL-6) level on day 1. Favorable functional outcome, defined as Glasgow Outcome Scale scores of 4 and 5, was observed in 68.6% of patients. Favorable functional outcome at all time points had a prediction accuracy of 71.1% in the training data set, with procalcitonin on day 1 being the most important differentiating factor at all time points. A total of 148 patients (27%) developed VP shunt dependency. The most important differentiating factor was hyperglycemia on admission. CONCLUSIONS The multiple variable analysis capability of decision trees enables exploration of dependent variables in the context of multiple changing influences over the course of an illness. The decision tree currently generated increases awareness of the early systemic stress response, which is seemingly pertinent for prognostication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NN完成签到,获得积分10
1秒前
2秒前
顾矜应助西鱼采纳,获得10
3秒前
6秒前
小杭76应助Arueliano采纳,获得10
6秒前
pj发布了新的文献求助10
6秒前
公主stellar完成签到,获得积分10
7秒前
7秒前
Tourist应助番茄你个土豆采纳,获得10
8秒前
过昭关发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
10秒前
kmmu0611完成签到 ,获得积分10
10秒前
科研通AI6应助ff采纳,获得10
11秒前
11秒前
李凌霄发布了新的文献求助10
12秒前
13秒前
YingyingFan完成签到,获得积分10
13秒前
智博36完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
落寞剑成完成签到 ,获得积分10
14秒前
橘灯发布了新的文献求助20
16秒前
Kannan发布了新的文献求助10
17秒前
stephen发布了新的文献求助10
19秒前
19秒前
科研通AI6应助咕噜咕噜采纳,获得20
20秒前
和谐的不二完成签到,获得积分10
21秒前
wangjie完成签到,获得积分20
22秒前
李凌霄完成签到,获得积分20
22秒前
22秒前
思源应助轻柔的心碎采纳,获得10
23秒前
77发布了新的文献求助10
26秒前
33发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
wanci应助zfcc采纳,获得10
31秒前
香蕉子骞完成签到 ,获得积分10
33秒前
爆米花应助cece采纳,获得10
34秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131510
求助须知:如何正确求助?哪些是违规求助? 4333301
关于积分的说明 13500077
捐赠科研通 4170192
什么是DOI,文献DOI怎么找? 2286127
邀请新用户注册赠送积分活动 1287084
关于科研通互助平台的介绍 1228076