Decision tree analysis in subarachnoid hemorrhage: prediction of outcome parameters during the course of aneurysmal subarachnoid hemorrhage using decision tree analysis

医学 蛛网膜下腔出血 格拉斯哥结局量表 决策树 队列 接收机工作特性 内科学 外科 机器学习 格拉斯哥昏迷指数 计算机科学
作者
Isabel C. Hostettler,Carl Muroi,Johannes Richter,Josef Schmid,Marian C. Neidert,Martin Seule,Oliver Boss,Athina Pangalu,Menno R. Germans,Emanuela Keller
出处
期刊:Journal of Neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:129 (6): 1499-1510 被引量:35
标识
DOI:10.3171/2017.7.jns17677
摘要

OBJECTIVE The aim of this study was to create prediction models for outcome parameters by decision tree analysis based on clinical and laboratory data in patients with aneurysmal subarachnoid hemorrhage (aSAH). METHODS The database consisted of clinical and laboratory parameters of 548 patients with aSAH who were admitted to the Neurocritical Care Unit, University Hospital Zurich. To examine the model performance, the cohort was randomly divided into a derivation cohort (60% [n = 329]; training data set) and a validation cohort (40% [n = 219]; test data set). The classification and regression tree prediction algorithm was applied to predict death, functional outcome, and ventriculoperitoneal (VP) shunt dependency. Chi-square automatic interaction detection was applied to predict delayed cerebral infarction on days 1, 3, and 7. RESULTS The overall mortality was 18.4%. The accuracy of the decision tree models was good for survival on day 1 and favorable functional outcome at all time points, with a difference between the training and test data sets of < 5%. Prediction accuracy for survival on day 1 was 75.2%. The most important differentiating factor was the interleukin-6 (IL-6) level on day 1. Favorable functional outcome, defined as Glasgow Outcome Scale scores of 4 and 5, was observed in 68.6% of patients. Favorable functional outcome at all time points had a prediction accuracy of 71.1% in the training data set, with procalcitonin on day 1 being the most important differentiating factor at all time points. A total of 148 patients (27%) developed VP shunt dependency. The most important differentiating factor was hyperglycemia on admission. CONCLUSIONS The multiple variable analysis capability of decision trees enables exploration of dependent variables in the context of multiple changing influences over the course of an illness. The decision tree currently generated increases awareness of the early systemic stress response, which is seemingly pertinent for prognostication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_QQC完成签到,获得积分10
1秒前
NeuroWhite完成签到,获得积分10
1秒前
1秒前
搜索v完成签到,获得积分10
2秒前
liuchuck完成签到 ,获得积分10
2秒前
2秒前
2秒前
猫独秀完成签到,获得积分10
2秒前
4秒前
buno应助yuefeng采纳,获得10
4秒前
yiming完成签到,获得积分10
4秒前
落落发布了新的文献求助10
5秒前
清秋若月完成签到 ,获得积分10
5秒前
5秒前
呵呵呵呵完成签到,获得积分10
6秒前
6秒前
远方发布了新的文献求助10
7秒前
zxc111关注了科研通微信公众号
7秒前
8秒前
nanhe698发布了新的文献求助10
8秒前
Huang完成签到,获得积分10
8秒前
碳土不凡完成签到 ,获得积分10
9秒前
9秒前
淡淡采白发布了新的文献求助10
10秒前
10秒前
11秒前
Akim应助dingdong采纳,获得10
11秒前
11秒前
11秒前
satchzhao发布了新的文献求助10
11秒前
可爱的函函应助尺素寸心采纳,获得10
11秒前
66发布了新的文献求助10
12秒前
一鸣完成签到,获得积分10
12秒前
12秒前
ding应助呵呵呵呵采纳,获得10
12秒前
12秒前
汉堡包应助hkxfg采纳,获得10
14秒前
15秒前
sw完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808