数学
子代数
连接(主束)
域代数上的
纯数学
除法代数
二次方程
双线性形式
简单(哲学)
细胞代数
二次代数
超代数
乔丹代数
代数表示
哲学
几何学
认识论
作者
Pilar Benito,Vsevolod Gubarev,Alexander Petrovich Pozhidaev
标识
DOI:10.1007/s00009-018-1234-5
摘要
We prove that all Rota–Baxter operators on a quadratic division algebra are trivial. For nonzero weight, we state that all Rota–Baxter operators on the simple odd-dimensional Jordan algebra of bilinear form are projections on a subalgebra along another one. For weight zero, we find a connection between the Rota–Baxter operators and the solutions to the alternative Yang–Baxter equation on the Cayley–Dickson algebra. We also investigate the Rota–Baxter operators on the matrix algebras of order two, the Grassmann algebra of plane, and the Kaplansky superalgebra.
科研通智能强力驱动
Strongly Powered by AbleSci AI