脱氢表雄酮
内分泌学
内科学
受体
生物
化学
雄激素
激素
医学
作者
Barbara J. Clark,Russell A. Prough,Carolyn M. Klinge
出处
期刊:Vitamins and hormones
日期:2018-01-01
卷期号:: 29-73
被引量:40
标识
DOI:10.1016/bs.vh.2018.02.003
摘要
Dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) and its sulfated metabolite DHEA-S are the most abundant steroids in circulation and decline with age. Rodent studies have shown that DHEA has a wide variety of effects on liver, kidney, adipose, reproductive tissues, and central nervous system/neuronal function. The mechanisms by which DHEA and DHEA-S impart their physiological effects may be direct actions on plasma membrane receptors, including a DHEA-specific, G-protein-coupled receptor in endothelial cells; various neuroreceptors, e.g., aminobutyric-acid-type A, N-methyl-d-aspartate (NMDA), and sigma-1 (S1R) receptors; by binding steroid receptors: androgen and estrogen receptors (ARs, ERα, or ERβ); or by their metabolism to more potent sex steroid hormones, e.g., testosterone, dihydrotestosterone, and estradiol, which bind with higher affinity to ARs and ERs. DHEA inhibits voltage-gated T-type calcium channels. DHEA activates peroxisome proliferator-activated receptor (PPARα) and CAR by a mechanism apparently involving PP2A, a protein phosphatase dephosphorylating PPARα and CAR to activate their transcriptional activity. We review our recent study showing DHEA activated GPER1 (G-protein-coupled estrogen receptor 1) in HepG2 cells to stimulate miR-21 transcription. This chapter reviews some of the physiological, biochemical, and molecular mechanisms of DHEA and DHEA-S activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI