发电机(电路理论)
组合数学
数学
对偶(序理论)
物理
量子力学
功率(物理)
作者
Joaquim Borges,Cristina Fernández-Córdoba,Roger Ten-Valls
出处
期刊:Advances in Mathematics of Communications
[American Institute of Mathematical Sciences]
日期:2018-01-01
卷期号:12 (1): 169-179
被引量:12
摘要
A ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$-additive code, $r≤ s$, is a${\mathbb{Z}}_{p^s}$-submodule of ${{\mathbb{Z}}_{p^r}^α× {\mathbb{Z}}_{p^s}^β}$. We introduce ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$-additive cyclic codes. These codes can be seen as ${\mathbb{Z}}_{p^s}[x]$-submodules of ${\mathcal{R}^{α,β}_{r,s}}= \frac{{\mathbb{Z}}_{p^r}[x]}{\langle x^α-1\rangle}×\frac{{\mathbb{Z}}_{p^s}[x]}{\langle x^β-1\rangle}$. We determine the generator polynomials of a code over ${\mathcal{R}^{α,β}_{r,s}}$ and a minimal spanning set over ${{\mathbb{Z}}_{p^r}^α× {\mathbb{Z}}_{p^s}^β}$ in terms of the generator polynomials. We also study the duality in the module ${\mathcal{R}^{α,β}_{r,s}}$.Our results generalise those for ${\mathbb{Z}}_{2}{\mathbb{Z}}_{4}$-additive cyclic codes.
科研通智能强力驱动
Strongly Powered by AbleSci AI