NLRP3 inflammasome and bruton tyrosine kinase inhibition interferes with upregulated platelet aggregation and in vitro thrombus formation in sickle cell mice
The nucleotide-binding domain leucine-rich repeat containing protein 3 (NLRP3) inflammasome is a critical inflammatory mechanism identified in platelets, which controls platelet activation and aggregation. We have recently shown that the platelet NLRP3 inflammasome is upregulated in sickle cell disease (SCD), which is mediated by Bruton tyrosine kinase (BTK). Here, we investigated the effect of pharmacological inhibition of NLRP3 and BTK on platelet aggregation and the formation of in vitro thrombi in Townes SCD mice. Mice were injected for 4 weeks with the NLRP3 inhibitor MCC950, the BTK inhibitor ibrutinib or vehicle control. NLRP3 activity, as monitored by caspase-1 activation, was upregulated in platelets from SCD mice, which was dependent on BTK. Large areas of platelet aggregates detected in the liver of SCD mice were decreased when mice were treated with MCC950 or ibrutinib. Moreover, platelet aggregation and in vitro thrombus formation were upregulated in SCD mice and were inhibited when mice were subjected to pharmacological inhibition of NLRP3 and BTK. Targeting the NLRP3 inflammasome might be a novel approach for antiplatelet therapy in SCD.