已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Clinical integration of machine learning for curative-intent radiation treatment of patients with prostate cancer

医学 前列腺癌 放射治疗 内科学 癌症治疗 癌症 肿瘤科 医学物理学 人工智能 计算机科学
作者
Chris McIntosh,Leigh Conroy,Michael C. Tjong,Tim Craig,Andrew Bayley,Charles Catton,Mary Gospodarowicz,Joelle Helou,Naghmeh Isfahanian,Victor Kong,Tony K.T. Lam,Srinivas Raman,Padraig Warde,Peter Chung,Alejandro Berlín,Thomas G. Purdie
出处
期刊:Nature Medicine [Springer Nature]
卷期号:27 (6): 999-1005 被引量:134
标识
DOI:10.1038/s41591-021-01359-w
摘要

Machine learning (ML) holds great promise for impacting healthcare delivery; however, to date most methods are tested in ‘simulated’ environments that cannot recapitulate factors influencing real-world clinical practice. We prospectively deployed and evaluated a random forest algorithm for therapeutic curative-intent radiation therapy (RT) treatment planning for prostate cancer in a blinded, head-to-head study with full integration into the clinical workflow. ML- and human-generated RT treatment plans were directly compared in a retrospective simulation with retesting (n = 50) and a prospective clinical deployment (n = 50) phase. Consistently throughout the study phases, treating physicians assessed ML- and human-generated RT treatment plans in a blinded manner following a priori defined standardized criteria and peer review processes, with the selected RT plan in the prospective phase delivered for patient treatment. Overall, 89% of ML-generated RT plans were considered clinically acceptable and 72% were selected over human-generated RT plans in head-to-head comparisons. RT planning using ML reduced the median time required for the entire RT planning process by 60.1% (118 to 47 h). While ML RT plan acceptability remained stable between the simulation and deployment phases (92 versus 86%), the number of ML RT plans selected for treatment was significantly reduced (83 versus 61%, respectively). These findings highlight that retrospective or simulated evaluation of ML methods, even under expert blinded review, may not be representative of algorithm acceptance in a real-world clinical setting when patient care is at stake. An artificial intelligence system prospectively deployed to design radiation therapy plans for patients with prostate cancer illustrates the real-world impact of machine learning in clinical practice and identifies factors influencing human–algorithm interaction
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
GU发布了新的文献求助10
2秒前
7秒前
烊驼完成签到,获得积分10
11秒前
11秒前
dap发布了新的文献求助10
11秒前
半岛完成签到,获得积分10
12秒前
413115348完成签到,获得积分20
12秒前
13秒前
毛毛毛完成签到,获得积分10
14秒前
14秒前
vigour发布了新的文献求助10
14秒前
15秒前
怕黑向秋发布了新的文献求助10
15秒前
15秒前
16秒前
PSJ完成签到,获得积分10
17秒前
香蕉觅云应助vigour采纳,获得10
18秒前
18秒前
413115348关注了科研通微信公众号
20秒前
h2o发布了新的文献求助10
20秒前
22秒前
22秒前
小心翼翼完成签到 ,获得积分10
23秒前
23秒前
hhh发布了新的文献求助10
25秒前
zhegewa发布了新的文献求助10
26秒前
自信的从寒完成签到 ,获得积分10
26秒前
NexusExplorer应助呆呆兽采纳,获得10
28秒前
orixero应助无奈的盈采纳,获得10
30秒前
31秒前
科研通AI6.1应助wwuu采纳,获得10
36秒前
孔孔完成签到,获得积分10
37秒前
丘比特应助呆萌的鸿煊采纳,获得10
39秒前
上官若男应助危机的一斩采纳,获得10
42秒前
JM完成签到,获得积分10
43秒前
45秒前
葡萄柚子应助木木采纳,获得20
46秒前
Akim应助王先生采纳,获得10
49秒前
充电宝应助常常嘻嘻采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771770
求助须知:如何正确求助?哪些是违规求助? 5593601
关于积分的说明 15428336
捐赠科研通 4905041
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587060
关于科研通互助平台的介绍 1541941