Clinical integration of machine learning for curative-intent radiation treatment of patients with prostate cancer

医学 前列腺癌 放射治疗 放射治疗计划 前瞻性队列研究 工作流程 内科学 临床试验 癌症 医学物理学 外科 计算机科学 数据库
作者
Chris McIntosh,Leigh Conroy,Michael C. Tjong,Tim Craig,Andrew Bayley,Charles Catton,Mary Gospodarowicz,Joelle Helou,Naghmeh Isfahanian,Victor Kong,Tony K.T. Lam,Srinivas Raman,Padraig Warde,Peter Chung,Alejandro Berlín,Thomas G. Purdie
出处
期刊:Nature Medicine [Springer Nature]
卷期号:27 (6): 999-1005 被引量:107
标识
DOI:10.1038/s41591-021-01359-w
摘要

Machine learning (ML) holds great promise for impacting healthcare delivery; however, to date most methods are tested in ‘simulated’ environments that cannot recapitulate factors influencing real-world clinical practice. We prospectively deployed and evaluated a random forest algorithm for therapeutic curative-intent radiation therapy (RT) treatment planning for prostate cancer in a blinded, head-to-head study with full integration into the clinical workflow. ML- and human-generated RT treatment plans were directly compared in a retrospective simulation with retesting (n = 50) and a prospective clinical deployment (n = 50) phase. Consistently throughout the study phases, treating physicians assessed ML- and human-generated RT treatment plans in a blinded manner following a priori defined standardized criteria and peer review processes, with the selected RT plan in the prospective phase delivered for patient treatment. Overall, 89% of ML-generated RT plans were considered clinically acceptable and 72% were selected over human-generated RT plans in head-to-head comparisons. RT planning using ML reduced the median time required for the entire RT planning process by 60.1% (118 to 47 h). While ML RT plan acceptability remained stable between the simulation and deployment phases (92 versus 86%), the number of ML RT plans selected for treatment was significantly reduced (83 versus 61%, respectively). These findings highlight that retrospective or simulated evaluation of ML methods, even under expert blinded review, may not be representative of algorithm acceptance in a real-world clinical setting when patient care is at stake. An artificial intelligence system prospectively deployed to design radiation therapy plans for patients with prostate cancer illustrates the real-world impact of machine learning in clinical practice and identifies factors influencing human–algorithm interaction
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小蘑菇应助小云采纳,获得10
1秒前
温暖的颜演完成签到 ,获得积分10
2秒前
lihongchi发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
英俊的铭应助TY采纳,获得10
7秒前
走着走着就散了完成签到,获得积分10
7秒前
复杂真完成签到 ,获得积分10
9秒前
11秒前
机智跳跳糖完成签到,获得积分10
12秒前
俊逸若之发布了新的文献求助10
13秒前
秉文完成签到,获得积分10
14秒前
李爱国应助柯仇天采纳,获得30
14秒前
lucylee完成签到,获得积分10
16秒前
小云发布了新的文献求助10
17秒前
茄子完成签到,获得积分10
17秒前
少女徐必成完成签到 ,获得积分10
19秒前
科研小白完成签到,获得积分20
26秒前
29秒前
小云完成签到,获得积分10
31秒前
柯仇天发布了新的文献求助30
34秒前
iNk应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
wanci应助科研通管家采纳,获得80
35秒前
耀学菜菜应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
宜醉宜游宜睡应助小爽采纳,获得10
37秒前
申思发布了新的文献求助10
37秒前
梅一一完成签到,获得积分10
37秒前
37秒前
晴空万里完成签到,获得积分10
41秒前
xixihaha完成签到,获得积分10
41秒前
科科完成签到 ,获得积分10
42秒前
wuhu发布了新的文献求助10
42秒前
zz完成签到,获得积分10
42秒前
酷炫的傲旋完成签到,获得积分10
42秒前
aaa完成签到,获得积分10
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137638
求助须知:如何正确求助?哪些是违规求助? 2788565
关于积分的说明 7787590
捐赠科研通 2444902
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023