Clinical integration of machine learning for curative-intent radiation treatment of patients with prostate cancer

医学 前列腺癌 放射治疗 内科学 癌症治疗 癌症 肿瘤科 医学物理学 人工智能 计算机科学
作者
Chris McIntosh,Leigh Conroy,Michael C. Tjong,Tim Craig,Andrew Bayley,Charles Catton,Mary Gospodarowicz,Joelle Helou,Naghmeh Isfahanian,Victor Kong,Tony K.T. Lam,Srinivas Raman,Padraig Warde,Peter Chung,Alejandro Berlín,Thomas G. Purdie
出处
期刊:Nature Medicine [Springer Nature]
卷期号:27 (6): 999-1005 被引量:134
标识
DOI:10.1038/s41591-021-01359-w
摘要

Machine learning (ML) holds great promise for impacting healthcare delivery; however, to date most methods are tested in ‘simulated’ environments that cannot recapitulate factors influencing real-world clinical practice. We prospectively deployed and evaluated a random forest algorithm for therapeutic curative-intent radiation therapy (RT) treatment planning for prostate cancer in a blinded, head-to-head study with full integration into the clinical workflow. ML- and human-generated RT treatment plans were directly compared in a retrospective simulation with retesting (n = 50) and a prospective clinical deployment (n = 50) phase. Consistently throughout the study phases, treating physicians assessed ML- and human-generated RT treatment plans in a blinded manner following a priori defined standardized criteria and peer review processes, with the selected RT plan in the prospective phase delivered for patient treatment. Overall, 89% of ML-generated RT plans were considered clinically acceptable and 72% were selected over human-generated RT plans in head-to-head comparisons. RT planning using ML reduced the median time required for the entire RT planning process by 60.1% (118 to 47 h). While ML RT plan acceptability remained stable between the simulation and deployment phases (92 versus 86%), the number of ML RT plans selected for treatment was significantly reduced (83 versus 61%, respectively). These findings highlight that retrospective or simulated evaluation of ML methods, even under expert blinded review, may not be representative of algorithm acceptance in a real-world clinical setting when patient care is at stake. An artificial intelligence system prospectively deployed to design radiation therapy plans for patients with prostate cancer illustrates the real-world impact of machine learning in clinical practice and identifies factors influencing human–algorithm interaction
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Criminology34应助谦让R采纳,获得10
1秒前
YifanWang应助谦让R采纳,获得30
1秒前
打打应助谦让R采纳,获得10
1秒前
White完成签到,获得积分20
1秒前
愉快书琴完成签到,获得积分10
1秒前
付其喜完成签到 ,获得积分10
1秒前
科研通AI2S应助llx666采纳,获得10
2秒前
2秒前
内敛诚C完成签到 ,获得积分10
3秒前
koma发布了新的文献求助10
3秒前
共享精神应助mjr采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
情怀应助raoxray采纳,获得10
5秒前
蓝桉完成签到,获得积分20
5秒前
Ilan完成签到,获得积分10
6秒前
心灵美小霸王完成签到,获得积分10
6秒前
6秒前
夏天特慢发布了新的文献求助10
8秒前
9秒前
小于完成签到,获得积分20
9秒前
搜集达人应助如鲸向海采纳,获得10
9秒前
高贵的若烟完成签到,获得积分10
9秒前
9秒前
Jasper应助wang采纳,获得10
10秒前
Rocket发布了新的文献求助10
10秒前
11秒前
12秒前
明理的盼山应助苗硕恒采纳,获得10
12秒前
大个应助动听的砖家采纳,获得10
13秒前
赵芳发布了新的文献求助30
14秒前
lyb1853完成签到 ,获得积分10
14秒前
15秒前
坦率的从波完成签到 ,获得积分0
15秒前
wxyshare应助peaceone采纳,获得10
15秒前
huang完成签到,获得积分10
16秒前
kl完成签到,获得积分10
16秒前
17秒前
科研通AI6应助卡拉胶尔采纳,获得20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600235
求助须知:如何正确求助?哪些是违规求助? 4685911
关于积分的说明 14840612
捐赠科研通 4675789
什么是DOI,文献DOI怎么找? 2538581
邀请新用户注册赠送积分活动 1505689
关于科研通互助平台的介绍 1471162