Clinical integration of machine learning for curative-intent radiation treatment of patients with prostate cancer

医学 前列腺癌 放射治疗 内科学 癌症治疗 癌症 肿瘤科 医学物理学 人工智能 计算机科学
作者
Chris McIntosh,Leigh Conroy,Michael C. Tjong,Tim Craig,Andrew Bayley,Charles Catton,Mary Gospodarowicz,Joelle Helou,Naghmeh Isfahanian,Victor Kong,Tony K.T. Lam,Srinivas Raman,Padraig Warde,Peter Chung,Alejandro Berlín,Thomas G. Purdie
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:27 (6): 999-1005 被引量:134
标识
DOI:10.1038/s41591-021-01359-w
摘要

Machine learning (ML) holds great promise for impacting healthcare delivery; however, to date most methods are tested in ‘simulated’ environments that cannot recapitulate factors influencing real-world clinical practice. We prospectively deployed and evaluated a random forest algorithm for therapeutic curative-intent radiation therapy (RT) treatment planning for prostate cancer in a blinded, head-to-head study with full integration into the clinical workflow. ML- and human-generated RT treatment plans were directly compared in a retrospective simulation with retesting (n = 50) and a prospective clinical deployment (n = 50) phase. Consistently throughout the study phases, treating physicians assessed ML- and human-generated RT treatment plans in a blinded manner following a priori defined standardized criteria and peer review processes, with the selected RT plan in the prospective phase delivered for patient treatment. Overall, 89% of ML-generated RT plans were considered clinically acceptable and 72% were selected over human-generated RT plans in head-to-head comparisons. RT planning using ML reduced the median time required for the entire RT planning process by 60.1% (118 to 47 h). While ML RT plan acceptability remained stable between the simulation and deployment phases (92 versus 86%), the number of ML RT plans selected for treatment was significantly reduced (83 versus 61%, respectively). These findings highlight that retrospective or simulated evaluation of ML methods, even under expert blinded review, may not be representative of algorithm acceptance in a real-world clinical setting when patient care is at stake. An artificial intelligence system prospectively deployed to design radiation therapy plans for patients with prostate cancer illustrates the real-world impact of machine learning in clinical practice and identifies factors influencing human–algorithm interaction
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1nooooo完成签到 ,获得积分10
1秒前
1秒前
crescent发布了新的文献求助10
2秒前
追寻冷松完成签到,获得积分10
2秒前
科研通AI6应助高大的可仁采纳,获得10
4秒前
小杭76应助霸气咖啡豆采纳,获得10
4秒前
瘦瘦山菡发布了新的文献求助10
5秒前
duoduozs完成签到,获得积分10
6秒前
6秒前
丸子发布了新的文献求助20
7秒前
11122发布了新的文献求助10
7秒前
我是你爹完成签到,获得积分10
7秒前
wxy完成签到,获得积分10
8秒前
辛勤芷天完成签到,获得积分20
9秒前
9秒前
10秒前
三三完成签到 ,获得积分10
10秒前
wanci应助crescent采纳,获得10
11秒前
wxy发布了新的文献求助10
11秒前
12秒前
xcl完成签到,获得积分10
13秒前
MM完成签到 ,获得积分10
13秒前
achilles发布了新的文献求助10
13秒前
FashionBoy应助哎呀妈呀采纳,获得10
14秒前
14秒前
sanL完成签到 ,获得积分10
15秒前
小马甲应助风清扬采纳,获得10
15秒前
充电宝应助LeiDY采纳,获得10
15秒前
超zc发布了新的文献求助10
15秒前
christine发布了新的文献求助10
16秒前
17秒前
orixero应助苹果听枫采纳,获得10
17秒前
传奇3应助诗诗采纳,获得10
17秒前
star应助诗诗采纳,获得10
18秒前
18秒前
CodeCraft应助小俊采纳,获得10
18秒前
XCL完成签到,获得积分10
18秒前
19秒前
LL发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258445
求助须知:如何正确求助?哪些是违规求助? 4420393
关于积分的说明 13760182
捐赠科研通 4293953
什么是DOI,文献DOI怎么找? 2356224
邀请新用户注册赠送积分活动 1352546
关于科研通互助平台的介绍 1313340