Clinical integration of machine learning for curative-intent radiation treatment of patients with prostate cancer

医学 前列腺癌 放射治疗 内科学 癌症治疗 癌症 肿瘤科 医学物理学 人工智能 计算机科学
作者
Chris McIntosh,Leigh Conroy,Michael C. Tjong,Tim Craig,Andrew Bayley,Charles Catton,Mary Gospodarowicz,Joelle Helou,Naghmeh Isfahanian,Victor Kong,Tony K.T. Lam,Srinivas Raman,Padraig Warde,Peter Chung,Alejandro Berlín,Thomas G. Purdie
出处
期刊:Nature Medicine [Springer Nature]
卷期号:27 (6): 999-1005 被引量:134
标识
DOI:10.1038/s41591-021-01359-w
摘要

Machine learning (ML) holds great promise for impacting healthcare delivery; however, to date most methods are tested in ‘simulated’ environments that cannot recapitulate factors influencing real-world clinical practice. We prospectively deployed and evaluated a random forest algorithm for therapeutic curative-intent radiation therapy (RT) treatment planning for prostate cancer in a blinded, head-to-head study with full integration into the clinical workflow. ML- and human-generated RT treatment plans were directly compared in a retrospective simulation with retesting (n = 50) and a prospective clinical deployment (n = 50) phase. Consistently throughout the study phases, treating physicians assessed ML- and human-generated RT treatment plans in a blinded manner following a priori defined standardized criteria and peer review processes, with the selected RT plan in the prospective phase delivered for patient treatment. Overall, 89% of ML-generated RT plans were considered clinically acceptable and 72% were selected over human-generated RT plans in head-to-head comparisons. RT planning using ML reduced the median time required for the entire RT planning process by 60.1% (118 to 47 h). While ML RT plan acceptability remained stable between the simulation and deployment phases (92 versus 86%), the number of ML RT plans selected for treatment was significantly reduced (83 versus 61%, respectively). These findings highlight that retrospective or simulated evaluation of ML methods, even under expert blinded review, may not be representative of algorithm acceptance in a real-world clinical setting when patient care is at stake. An artificial intelligence system prospectively deployed to design radiation therapy plans for patients with prostate cancer illustrates the real-world impact of machine learning in clinical practice and identifies factors influencing human–algorithm interaction
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良香岚发布了新的文献求助10
刚刚
hdh016完成签到,获得积分10
1秒前
1秒前
1秒前
wangq完成签到 ,获得积分10
2秒前
Hm完成签到,获得积分10
2秒前
alex关注了科研通微信公众号
2秒前
3秒前
小泉完成签到 ,获得积分10
3秒前
tom完成签到,获得积分10
3秒前
zhabgyyy完成签到,获得积分10
3秒前
feng完成签到,获得积分10
3秒前
wangzhaorong完成签到,获得积分20
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
linjunqi发布了新的文献求助10
5秒前
yuki关注了科研通微信公众号
6秒前
彼翎完成签到,获得积分10
6秒前
研友_Zlx3aZ发布了新的文献求助10
6秒前
kaida完成签到,获得积分10
6秒前
lucky完成签到 ,获得积分10
7秒前
二师兄来挨打完成签到,获得积分10
8秒前
chef发布了新的文献求助10
8秒前
Earnestlee完成签到,获得积分10
8秒前
ozok关注了科研通微信公众号
8秒前
wangzhaorong发布了新的文献求助10
9秒前
重要衬衫发布了新的文献求助10
9秒前
善良香岚完成签到,获得积分20
9秒前
xxxyt完成签到,获得积分20
10秒前
xixilulixiu完成签到 ,获得积分10
10秒前
FashionBoy应助大胆诗云采纳,获得10
11秒前
乐乐应助沚沐采纳,获得10
11秒前
caowen完成签到 ,获得积分10
11秒前
沙翠风完成签到,获得积分10
12秒前
13秒前
卓卓完成签到,获得积分10
13秒前
13秒前
14秒前
Lucas应助Lupin采纳,获得10
14秒前
彭于晏应助Lupin采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490517
求助须知:如何正确求助?哪些是违规求助? 4589033
关于积分的说明 14423100
捐赠科研通 4521062
什么是DOI,文献DOI怎么找? 2477127
邀请新用户注册赠送积分活动 1462477
关于科研通互助平台的介绍 1435318