Image-based deep learning model for predicting pathological response in rectal cancer using post-chemoradiotherapy magnetic resonance imaging

放化疗 磁共振成像 医学 卡帕 结直肠癌 放射治疗 深度学习 放射科 接收机工作特性 核医学 试验预测值 癌症 人工智能 内科学 计算机科学 数学 几何学
作者
Bum‐Sup Jang,Yu Jin Lim,Changhoon Song,Seung Hyuck Jeon,Keun‐Wook Lee,Sung‐Bum Kang,Yoon Jin Lee,Kim Js
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:161: 183-190 被引量:17
标识
DOI:10.1016/j.radonc.2021.06.019
摘要

Introduction To develop an image-based deep learning model for predicting pathological response in rectal cancer using post-chemoradiotherapy magnetic resonance (MR) imaging. Materials and methods A total of 466 patients with locally advanced rectal cancer who received preoperative chemoradiotherapy followed by surgical resection were collected from single center, among whom 113 (24.3%) were allocated to the holdout testing set. Complete response (pCR) was defined as Dworak tumor regression grade (TRG) 4, while good response (GR) was defined as TRG 3 or 4. Based on post-chemoradiotherapy T2-weighted axial MR images, two deep learning models were developed to predict pCR and GR, respectively. The prediction performance of the deep learning models was evaluated in the testing set and was compared to that of a senior radiologist and a radiation oncologist. Results The deep learning model showed an area under the receiver operating characteristic curve, sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 0.76, 0.30, 0.96, 0.67, 0.87, and 85.0% for predicting pCR and 0.72, 0.54, 0.81, 0.60, 0.77, and 71.7% for predicting GR, respectively. The deep learning model had a superior predictive performance than the observers. Fair agreement between the ground truth and the model was shown for pCR prediction (kappa = 0.34) and GR prediction (kappa = 0.36). Conclusions The post-chemoradiotherapy T2-weighted axial MR image-based deep learning model showed acceptable performance in predicting pCR or GR in patients with rectal cancer, compared with human observers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
竹心蜓发布了新的文献求助10
1秒前
zkexuan发布了新的文献求助20
1秒前
2秒前
蒸蒸日上发布了新的文献求助10
2秒前
2秒前
2秒前
小曹硕士发布了新的文献求助10
3秒前
slb1319完成签到,获得积分10
3秒前
大只00发布了新的文献求助10
3秒前
demon应助无限的宫苴采纳,获得10
3秒前
qindanyan完成签到,获得积分10
4秒前
小蘑菇应助冥月采纳,获得10
4秒前
打打应助haha采纳,获得10
5秒前
怕黑誉完成签到,获得积分10
5秒前
微笑可乐发布了新的文献求助10
5秒前
发嗲的黑夜完成签到,获得积分10
6秒前
田召祥发布了新的文献求助10
6秒前
热心克莉丝完成签到,获得积分10
8秒前
CR7应助yu采纳,获得20
9秒前
wuyu完成签到,获得积分10
9秒前
丁丁完成签到 ,获得积分10
10秒前
ysssbq完成签到,获得积分10
11秒前
11秒前
sss驳回了unique应助
12秒前
Doctor.Xie完成签到,获得积分10
12秒前
竹心蜓完成签到,获得积分10
13秒前
Rain完成签到,获得积分10
13秒前
14秒前
英姑应助木木采纳,获得10
14秒前
mao应助泡泡糖采纳,获得20
14秒前
14秒前
14秒前
柯一一应助大只00采纳,获得10
15秒前
谢琉圭发布了新的文献求助10
15秒前
热心市民小红花应助yrll采纳,获得10
15秒前
15秒前
小曹硕士完成签到,获得积分20
17秒前
17秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951583
求助须知:如何正确求助?哪些是违规求助? 3496980
关于积分的说明 11085596
捐赠科研通 3227413
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868495
科研通“疑难数据库(出版商)”最低求助积分说明 801154