Image-based deep learning model for predicting pathological response in rectal cancer using post-chemoradiotherapy magnetic resonance imaging

放化疗 磁共振成像 医学 卡帕 结直肠癌 放射治疗 深度学习 放射科 接收机工作特性 核医学 试验预测值 癌症 人工智能 内科学 计算机科学 数学 几何学
作者
Bum‐Sup Jang,Yu Jin Lim,Changhoon Song,Seung Hyuck Jeon,Keun‐Wook Lee,Sung‐Bum Kang,Yoon Jin Lee,Kim Js
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:161: 183-190 被引量:17
标识
DOI:10.1016/j.radonc.2021.06.019
摘要

Introduction To develop an image-based deep learning model for predicting pathological response in rectal cancer using post-chemoradiotherapy magnetic resonance (MR) imaging. Materials and methods A total of 466 patients with locally advanced rectal cancer who received preoperative chemoradiotherapy followed by surgical resection were collected from single center, among whom 113 (24.3%) were allocated to the holdout testing set. Complete response (pCR) was defined as Dworak tumor regression grade (TRG) 4, while good response (GR) was defined as TRG 3 or 4. Based on post-chemoradiotherapy T2-weighted axial MR images, two deep learning models were developed to predict pCR and GR, respectively. The prediction performance of the deep learning models was evaluated in the testing set and was compared to that of a senior radiologist and a radiation oncologist. Results The deep learning model showed an area under the receiver operating characteristic curve, sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 0.76, 0.30, 0.96, 0.67, 0.87, and 85.0% for predicting pCR and 0.72, 0.54, 0.81, 0.60, 0.77, and 71.7% for predicting GR, respectively. The deep learning model had a superior predictive performance than the observers. Fair agreement between the ground truth and the model was shown for pCR prediction (kappa = 0.34) and GR prediction (kappa = 0.36). Conclusions The post-chemoradiotherapy T2-weighted axial MR image-based deep learning model showed acceptable performance in predicting pCR or GR in patients with rectal cancer, compared with human observers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ohh发布了新的文献求助10
2秒前
pentayouth发布了新的文献求助10
3秒前
wanci应助务实冷风采纳,获得10
4秒前
5秒前
6秒前
DQY发布了新的文献求助10
6秒前
7秒前
科研小白发布了新的文献求助10
7秒前
8秒前
9秒前
墨墨完成签到,获得积分10
10秒前
大林完成签到,获得积分20
11秒前
tttrco完成签到,获得积分10
12秒前
后知后觉完成签到,获得积分10
12秒前
务实冷风完成签到,获得积分20
13秒前
飞燕完成签到 ,获得积分10
13秒前
yuan完成签到,获得积分10
15秒前
唐思远应助枫1538采纳,获得10
17秒前
lzzao完成签到,获得积分10
17秒前
wanwan完成签到,获得积分10
18秒前
知足且上进完成签到,获得积分10
18秒前
粗心的安彤完成签到,获得积分10
18秒前
真实的衬衫关注了科研通微信公众号
18秒前
lzzao发布了新的文献求助10
20秒前
打打应助科研通管家采纳,获得10
21秒前
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
AaronW应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得30
21秒前
21秒前
科研通AI2S应助jsm采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得30
22秒前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165832
求助须知:如何正确求助?哪些是违规求助? 2817091
关于积分的说明 7914877
捐赠科研通 2476611
什么是DOI,文献DOI怎么找? 1319056
科研通“疑难数据库(出版商)”最低求助积分说明 632332
版权声明 602415