微流控
可扩展性
基因沉默
荧光素酶
纳米技术
吞吐量
信使核糖核酸
缩放比例
材料科学
RNA干扰
计算生物学
计算机科学
化学
核糖核酸
生物
基因
转染
电信
几何学
数据库
生物化学
数学
无线
作者
Sarah J. Shepherd,Claude C. Warzecha,Sagar Yadavali,Rakan El‐Mayta,Mohamad‐Gabriel Alameh,Lili Wang,Drew Weissman,James M. Wilson,David Issadore,Michael J. Mitchell
出处
期刊:Nano Letters
[American Chemical Society]
日期:2021-06-30
卷期号:21 (13): 5671-5680
被引量:155
标识
DOI:10.1021/acs.nanolett.1c01353
摘要
A major challenge to advance lipid nanoparticles (LNPs) for RNA therapeutics is the development of formulations that can be produced reliably across the various scales of drug development. Microfluidics can generate LNPs with precisely defined properties, but have been limited by challenges in scaling throughput. To address this challenge, we present a scalable, parallelized microfluidic device (PMD) that incorporates an array of 128 mixing channels that operate simultaneously. The PMD achieves a >100× production rate compared to single microfluidic channels, without sacrificing desirable LNP physical properties and potency typical of microfluidic-generated LNPs. In mice, we show superior delivery of LNPs encapsulating either Factor VII siRNA or luciferase-encoding mRNA generated using a PMD compared to conventional mixing, with a 4-fold increase in hepatic gene silencing and 5-fold increase in luciferase expression, respectively. These results suggest that this PMD can generate scalable and reproducible LNP formulations needed for emerging clinical applications, including RNA therapeutics and vaccines.
科研通智能强力驱动
Strongly Powered by AbleSci AI