异宿分岔
分叉
极限(数学)
余维数
尖点(奇点)
马鞍
数学
分叉理论的生物学应用
非线性系统
霍普夫分叉
统计物理学
极限环
控制理论(社会学)
数学分析
物理
计算机科学
几何学
控制(管理)
数学优化
量子力学
人工智能
作者
Cuicui Jiang,Yongxin Zhang,Wendi Wang
标识
DOI:10.1142/s0218127421501042
摘要
In this paper, a p53-Mdm2 mathematical model is analyzed to understand the biological implications of feedback loops in a p53 system. Results show that the model can undergo four types of codimension-3 Bogdanov–Takens bifurcations, including cusp, saddle, focus and elliptic. Specifically, we find new phenomena including the coexistence of four positive equilibria, two limit cycles, the coexistence of three stable states (two stable equilibria and one stable limit cycle, or three stable equilibria), a heteroclinic loop enclosing a smaller stable limit cycle and a larger stable limit cycle. These findings extend the understanding of the complex dynamics of the p53 system, and can provide some potential biological applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI