A Drug-Target Interaction Prediction Based on GCN Learning

计算机科学 药物靶点 人工智能 图形 机器学习 节点(物理) 代表(政治) 交互网络 数据挖掘 理论计算机科学 基因 药理学 工程类 政治学 法学 政治 结构工程 化学 生物化学 医学
作者
Xiaodan Wang,Jihong Wang,Zixin Wang
出处
期刊:International Conference on Bioinformatics 卷期号:: 42-47 被引量:9
标识
DOI:10.1109/icbcb52223.2021.9459231
摘要

In recent years, the use of deep learning methods for drug-target interaction (DTI) prediction has become the mainstream research direction. Drugs, targets, and other related biological and chemical properties have constructed a very complex network structure. How to effectively extract network features and predict target has become a big challenge. Graph Convolutional Neural Network (GCN) is one of the effective deep learning methods for complex networks. It extends the convolution operation from traditional European space to non-Euclidean space, and can simultaneously perform end-to-end node attribute information and structural information. End-to-end learning, its core idea is to learn a function mapping, through which nodes in the mapping graph can aggregate their own features and its neighbor features to generate a new representation of the node. In this study, we introduce the GCN link prediction method decagon for DTI prediction research. The experimental data comes from the DTI-net model. By combining the drug-drug interaction relationship matrix, the target-target interaction relationship matrix and the drug-target interaction relationship matrix provided by DTI-net, the drug characteristics and target characteristics are expressed as the attribute characteristics of the network nodes, thereby obtaining DTI Heterogeneous Network. In order to improve the ability to predict the drug-target relationship, this article has done a lot of tuning experiments in parameter selection and optimization strategies, and analyzed and compared the prediction results. The best predicted AUC is 0.919, and the best AUPR is 0.922. In terms of traditional drug-target prediction methods, the GCN method can effectively extract the features contained in heterogeneous networks, which proves the feasibility of this method in predicting drug-target interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴西西发布了新的文献求助10
刚刚
在水一方应助Cssss采纳,获得10
1秒前
1秒前
小蘑菇应助Cssss采纳,获得10
1秒前
李健的小迷弟应助Cssss采纳,获得10
1秒前
复杂的棒球完成签到,获得积分10
1秒前
伊萨卡发布了新的文献求助10
1秒前
1秒前
零零完成签到,获得积分10
2秒前
2秒前
maxyer完成签到,获得积分10
2秒前
李健应助Yang采纳,获得10
2秒前
善学以致用应助Lengbo采纳,获得10
2秒前
夏天有空调哦完成签到,获得积分10
2秒前
干净的天宇关注了科研通微信公众号
3秒前
tuiiii完成签到 ,获得积分10
3秒前
胡图图啦啦完成签到,获得积分10
3秒前
渡边卯卯完成签到,获得积分10
3秒前
大力的蚂蚁完成签到,获得积分10
4秒前
4秒前
雷若山完成签到 ,获得积分10
5秒前
逝月完成签到,获得积分10
5秒前
1108发布了新的文献求助10
5秒前
踏实雪一完成签到,获得积分10
5秒前
麦克斯韦的小妖完成签到,获得积分10
5秒前
Sindy发布了新的文献求助10
5秒前
尊敬硬币完成签到,获得积分10
5秒前
清脆的孤菱完成签到 ,获得积分10
5秒前
dxxxxx完成签到,获得积分10
6秒前
6秒前
大模型应助嘿嘿嘿嘿采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
在水一方应助maxyer采纳,获得10
8秒前
dew应助佳阳采纳,获得10
8秒前
pengyuLiu完成签到,获得积分10
8秒前
JLUO完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257269
求助须知:如何正确求助?哪些是违规求助? 4419464
关于积分的说明 13756172
捐赠科研通 4292683
什么是DOI,文献DOI怎么找? 2355623
邀请新用户注册赠送积分活动 1352050
关于科研通互助平台的介绍 1312824