A Drug-Target Interaction Prediction Based on GCN Learning

计算机科学 药物靶点 人工智能 图形 机器学习 节点(物理) 代表(政治) 交互网络 数据挖掘 理论计算机科学 基因 药理学 工程类 政治学 法学 政治 结构工程 化学 生物化学 医学
作者
Xiaodan Wang,Jihong Wang,Zixin Wang
出处
期刊:International Conference on Bioinformatics 卷期号:: 42-47 被引量:9
标识
DOI:10.1109/icbcb52223.2021.9459231
摘要

In recent years, the use of deep learning methods for drug-target interaction (DTI) prediction has become the mainstream research direction. Drugs, targets, and other related biological and chemical properties have constructed a very complex network structure. How to effectively extract network features and predict target has become a big challenge. Graph Convolutional Neural Network (GCN) is one of the effective deep learning methods for complex networks. It extends the convolution operation from traditional European space to non-Euclidean space, and can simultaneously perform end-to-end node attribute information and structural information. End-to-end learning, its core idea is to learn a function mapping, through which nodes in the mapping graph can aggregate their own features and its neighbor features to generate a new representation of the node. In this study, we introduce the GCN link prediction method decagon for DTI prediction research. The experimental data comes from the DTI-net model. By combining the drug-drug interaction relationship matrix, the target-target interaction relationship matrix and the drug-target interaction relationship matrix provided by DTI-net, the drug characteristics and target characteristics are expressed as the attribute characteristics of the network nodes, thereby obtaining DTI Heterogeneous Network. In order to improve the ability to predict the drug-target relationship, this article has done a lot of tuning experiments in parameter selection and optimization strategies, and analyzed and compared the prediction results. The best predicted AUC is 0.919, and the best AUPR is 0.922. In terms of traditional drug-target prediction methods, the GCN method can effectively extract the features contained in heterogeneous networks, which proves the feasibility of this method in predicting drug-target interactions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观的鹤轩完成签到,获得积分10
1秒前
QP34发布了新的文献求助10
2秒前
1111完成签到,获得积分10
2秒前
怕孤独的海秋完成签到,获得积分10
2秒前
系小小鱼啊完成签到,获得积分10
2秒前
花盈满袖完成签到,获得积分10
2秒前
内向的夏寒完成签到,获得积分10
3秒前
yuyuyu完成签到,获得积分10
3秒前
4秒前
4秒前
哒哒哒完成签到 ,获得积分10
4秒前
桐桐应助芋头读文献采纳,获得10
4秒前
Carol完成签到,获得积分10
5秒前
烟花应助Gaojin锦采纳,获得10
5秒前
元宝团子完成签到,获得积分10
6秒前
李爱国应助虞无剑采纳,获得30
6秒前
时年完成签到,获得积分10
6秒前
日落收藏家完成签到,获得积分10
6秒前
吴雪完成签到 ,获得积分10
6秒前
7秒前
crz完成签到,获得积分10
7秒前
xing完成签到,获得积分10
7秒前
zhuyuxin完成签到,获得积分10
8秒前
合适的天完成签到,获得积分10
8秒前
文静的行恶完成签到,获得积分10
8秒前
自信向梦完成签到,获得积分10
8秒前
QP34完成签到,获得积分10
8秒前
神猪无敌发布了新的文献求助20
9秒前
9秒前
幸福鞯完成签到,获得积分10
9秒前
忧郁冰真发布了新的文献求助30
10秒前
Khr1stINK完成签到,获得积分10
10秒前
结实的秋天完成签到,获得积分10
10秒前
稳重一鸣完成签到,获得积分10
11秒前
HeAuBook完成签到,获得积分0
11秒前
李大达完成签到,获得积分10
12秒前
孔问筠完成签到,获得积分0
12秒前
草莓派完成签到,获得积分10
13秒前
hhh112发布了新的文献求助10
13秒前
訫藍发布了新的文献求助20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568540
求助须知:如何正确求助?哪些是违规求助? 4653148
关于积分的说明 14704472
捐赠科研通 4594943
什么是DOI,文献DOI怎么找? 2521424
邀请新用户注册赠送积分活动 1493006
关于科研通互助平台的介绍 1463793