A Drug-Target Interaction Prediction Based on GCN Learning

计算机科学 药物靶点 人工智能 图形 机器学习 节点(物理) 代表(政治) 交互网络 数据挖掘 理论计算机科学 政治学 法学 化学 工程类 基因 药理学 政治 医学 结构工程 生物化学
作者
Xiaodan Wang,Jihong Wang,Zixin Wang
出处
期刊:International Conference on Bioinformatics 卷期号:: 42-47 被引量:9
标识
DOI:10.1109/icbcb52223.2021.9459231
摘要

In recent years, the use of deep learning methods for drug-target interaction (DTI) prediction has become the mainstream research direction. Drugs, targets, and other related biological and chemical properties have constructed a very complex network structure. How to effectively extract network features and predict target has become a big challenge. Graph Convolutional Neural Network (GCN) is one of the effective deep learning methods for complex networks. It extends the convolution operation from traditional European space to non-Euclidean space, and can simultaneously perform end-to-end node attribute information and structural information. End-to-end learning, its core idea is to learn a function mapping, through which nodes in the mapping graph can aggregate their own features and its neighbor features to generate a new representation of the node. In this study, we introduce the GCN link prediction method decagon for DTI prediction research. The experimental data comes from the DTI-net model. By combining the drug-drug interaction relationship matrix, the target-target interaction relationship matrix and the drug-target interaction relationship matrix provided by DTI-net, the drug characteristics and target characteristics are expressed as the attribute characteristics of the network nodes, thereby obtaining DTI Heterogeneous Network. In order to improve the ability to predict the drug-target relationship, this article has done a lot of tuning experiments in parameter selection and optimization strategies, and analyzed and compared the prediction results. The best predicted AUC is 0.919, and the best AUPR is 0.922. In terms of traditional drug-target prediction methods, the GCN method can effectively extract the features contained in heterogeneous networks, which proves the feasibility of this method in predicting drug-target interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静默发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
3秒前
5秒前
高文强完成签到 ,获得积分10
5秒前
5秒前
6秒前
7秒前
7秒前
背水完成签到 ,获得积分10
8秒前
8秒前
萧水白发布了新的文献求助100
9秒前
tlx发布了新的文献求助30
10秒前
隐形曼青应助拔丝香芋采纳,获得10
10秒前
Xieyusen发布了新的文献求助10
11秒前
fantastic完成签到,获得积分10
12秒前
静默完成签到,获得积分10
12秒前
森森完成签到,获得积分10
12秒前
优秀元枫发布了新的文献求助10
12秒前
哈哈发布了新的文献求助10
12秒前
dudu10000发布了新的文献求助10
15秒前
秀丽的大门完成签到,获得积分10
15秒前
机智的绿野完成签到,获得积分10
16秒前
16秒前
18秒前
30040完成签到,获得积分10
21秒前
CodeCraft应助优秀元枫采纳,获得10
21秒前
念姬发布了新的文献求助10
22秒前
Suttier发布了新的文献求助10
22秒前
孙枭雪完成签到,获得积分10
25秒前
甜甜豁完成签到,获得积分10
26秒前
27秒前
28秒前
28秒前
爆米花应助YEM采纳,获得10
29秒前
斯文败类应助冷静的奇迹采纳,获得10
31秒前
32秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966919
求助须知:如何正确求助?哪些是违规求助? 3512387
关于积分的说明 11162970
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432