A Drug-Target Interaction Prediction Based on GCN Learning

计算机科学 药物靶点 人工智能 图形 机器学习 节点(物理) 代表(政治) 交互网络 数据挖掘 理论计算机科学 政治学 法学 化学 工程类 基因 药理学 政治 医学 结构工程 生物化学
作者
Xiaodan Wang,Jihong Wang,Zixin Wang
出处
期刊:International Conference on Bioinformatics 卷期号:: 42-47 被引量:9
标识
DOI:10.1109/icbcb52223.2021.9459231
摘要

In recent years, the use of deep learning methods for drug-target interaction (DTI) prediction has become the mainstream research direction. Drugs, targets, and other related biological and chemical properties have constructed a very complex network structure. How to effectively extract network features and predict target has become a big challenge. Graph Convolutional Neural Network (GCN) is one of the effective deep learning methods for complex networks. It extends the convolution operation from traditional European space to non-Euclidean space, and can simultaneously perform end-to-end node attribute information and structural information. End-to-end learning, its core idea is to learn a function mapping, through which nodes in the mapping graph can aggregate their own features and its neighbor features to generate a new representation of the node. In this study, we introduce the GCN link prediction method decagon for DTI prediction research. The experimental data comes from the DTI-net model. By combining the drug-drug interaction relationship matrix, the target-target interaction relationship matrix and the drug-target interaction relationship matrix provided by DTI-net, the drug characteristics and target characteristics are expressed as the attribute characteristics of the network nodes, thereby obtaining DTI Heterogeneous Network. In order to improve the ability to predict the drug-target relationship, this article has done a lot of tuning experiments in parameter selection and optimization strategies, and analyzed and compared the prediction results. The best predicted AUC is 0.919, and the best AUPR is 0.922. In terms of traditional drug-target prediction methods, the GCN method can effectively extract the features contained in heterogeneous networks, which proves the feasibility of this method in predicting drug-target interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
十二发布了新的文献求助10
1秒前
星辰大海应助完美的婴采纳,获得10
2秒前
fly完成签到 ,获得积分10
4秒前
汉堡包应助1111采纳,获得10
4秒前
yf完成签到 ,获得积分10
4秒前
SXIEONE发布了新的文献求助10
5秒前
5秒前
liangliang完成签到,获得积分10
6秒前
6秒前
happy完成签到 ,获得积分20
6秒前
Jessica应助Yue采纳,获得30
9秒前
botanist完成签到 ,获得积分10
9秒前
11秒前
愫浅发布了新的文献求助10
12秒前
12秒前
耍酷的小海豚完成签到,获得积分10
14秒前
852应助SXIEONE采纳,获得10
14秒前
快乐的白桃完成签到 ,获得积分10
15秒前
happy关注了科研通微信公众号
15秒前
15秒前
大气摩托发布了新的文献求助10
17秒前
17秒前
在水一方应助BreadCheems采纳,获得10
18秒前
闪电发布了新的文献求助30
18秒前
啦啦啦完成签到,获得积分10
18秒前
英姑应助愫浅采纳,获得10
18秒前
19秒前
一瓣橘子完成签到,获得积分10
20秒前
21秒前
善学以致用应助大气摩托采纳,获得10
22秒前
共享精神应助大气摩托采纳,获得10
22秒前
星辰大海应助大气摩托采纳,获得10
23秒前
完美世界应助大气摩托采纳,获得10
23秒前
23秒前
shuishui发布了新的文献求助10
24秒前
酷波er应助vidgers采纳,获得10
24秒前
miles发布了新的文献求助10
25秒前
SXIEONE完成签到 ,获得积分10
28秒前
幽默海燕完成签到,获得积分10
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248513
求助须知:如何正确求助?哪些是违规求助? 2891903
关于积分的说明 8269128
捐赠科研通 2559920
什么是DOI,文献DOI怎么找? 1388768
科研通“疑难数据库(出版商)”最低求助积分说明 650897
邀请新用户注册赠送积分活动 627798