AniAMPpred: artificial intelligence guided discovery of novel antimicrobial peptides in animal kingdom

抗菌肽 基因组 计算生物学 生物信息学 抗菌剂 功能(生物学) 功能基因组学 基因组学 计算机科学 人工智能 生物 生物信息学 机器学习 遗传学 基因 微生物学
作者
Ritesh Kumar Sharma,Sameer Shrivastava,Sanjay Kumar Singh,Abhinav Kumar,Sonal Saxena,Raj Kumar Singh
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:28
标识
DOI:10.1093/bib/bbab242
摘要

With advancements in genomics, there has been substantial reduction in the cost and time of genome sequencing and has resulted in lot of data in genome databases. Antimicrobial host defense proteins provide protection against invading microbes. But confirming the antimicrobial function of host proteins by wet-lab experiments is expensive and time consuming. Therefore, there is a need to develop an in silico tool to identify the antimicrobial function of proteins. In the current study, we developed a model AniAMPpred by considering all the available antimicrobial peptides (AMPs) of length $\in $[10 200] from the animal kingdom. The model utilizes a support vector machine algorithm with deep learning-based features and identifies probable antimicrobial proteins (PAPs) in the genome of animals. The results show that our proposed model outperforms other state-of-the-art classifiers, has very high confidence in its predictions, is not biased and can classify both AMPs and non-AMPs for a diverse peptide length with high accuracy. By utilizing AniAMPpred, we identified 436 PAPs in the genome of Helobdella robusta. To further confirm the functional activity of PAPs, we performed BLAST analysis against known AMPs. On detailed analysis of five selected PAPs, we could observe their similarity with antimicrobial proteins of several animal species. Thus, our proposed model can help the researchers identify PAPs in the genome of animals and provide insight into the functional identity of different proteins. An online prediction server is also developed based on the proposed approach, which is freely accessible at https://aniamppred.anvil.app/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高大雁兰发布了新的文献求助10
1秒前
结实的泥猴桃完成签到 ,获得积分10
5秒前
9秒前
上官若男应助结实星星采纳,获得10
10秒前
11秒前
划水的鱼发布了新的文献求助10
14秒前
14秒前
跳跃起眸发布了新的文献求助10
15秒前
18秒前
bbj发布了新的文献求助10
21秒前
爆米花应助啊啊啊采纳,获得10
21秒前
23秒前
iiiau发布了新的文献求助10
24秒前
25秒前
完美世界应助胡图图采纳,获得10
25秒前
27秒前
FashionBoy应助结实星星采纳,获得10
27秒前
27秒前
酷炫茉莉发布了新的文献求助10
29秒前
31秒前
虚幻初之发布了新的文献求助10
33秒前
34秒前
计小花完成签到,获得积分10
36秒前
38秒前
田様应助迷路谷蓝采纳,获得10
38秒前
啊啊啊发布了新的文献求助10
38秒前
胡图图发布了新的文献求助10
39秒前
科研通AI5应助虚幻初之采纳,获得10
41秒前
怕孤单的破茧完成签到,获得积分10
42秒前
43秒前
JustinYoung发布了新的文献求助10
44秒前
英俊的铭应助结实星星采纳,获得10
45秒前
happy发布了新的文献求助10
47秒前
48秒前
cc完成签到 ,获得积分10
49秒前
wadaxiwa应助科研通管家采纳,获得10
49秒前
小蘑菇应助科研通管家采纳,获得10
49秒前
爆米花应助科研通管家采纳,获得10
49秒前
烟花应助科研通管家采纳,获得10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775590
求助须知:如何正确求助?哪些是违规求助? 3321201
关于积分的说明 10204093
捐赠科研通 3036028
什么是DOI,文献DOI怎么找? 1665953
邀请新用户注册赠送积分活动 797196
科研通“疑难数据库(出版商)”最低求助积分说明 757766