Source identification of surface water pollution using multivariate statistics combined with physicochemical and socioeconomic parameters

污染 环境科学 多元统计 主成分分析 污水 环境工程 统计 数学 生态学 生物
作者
Han Zhang,Hongfei Li,Dongdong Gao,Haoran Yu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:806 (Pt 3): 151274-151274 被引量:92
标识
DOI:10.1016/j.scitotenv.2021.151274
摘要

Accurate identification of potential contamination sources of river water is a basis for effective pollution control and sustainable water management. Pollution source identification based on physicochemical-parameters-only method may lead to uncertainty and subjectivity. In this study along with hydrochemistry parameters (HPs), socioeconomic parameters (SPs) were considered as an auxiliary in multivariate statistics to achieve a comprehensive assessment on pollution sources with accurate estimates of source identification and apportionment. Fifteen physicochemical parameters were combined with twelve socioeconomic parameters in multivariate statistics to quantitatively assess potential pollution sources and their contributions to river water pollution. Multivariate statistics in the study included regression analysis, principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR). Regression analysis between hydro-chemical parameters and socioeconomic parameters indicated that industrial and population growths were the main factors related to ammonium nitrogen (NH4+-N), total nitrogen (TN) contamination, while total phosphorus (TP) was more correlated with domestic discharge and poultry breeding. Based on the results of PCA, four latent factors were extracted for hydrochemistry parameters (HPs) and socioeconomics parameters (SPs), accounting for 68.59% and 82.40% of the total variance, respectively. With integrating the PCA results of the two parameter groups, pollution sources were ranked as industrial effluents > rural wastewater > municipal sewage > phytoplankton growth and agricultural cultivation. Source apportionment in APCS-MLR revealed that industrial wastewater and rural wastewater averagely contributed 35.68% and 25.08% of pollution, respectively, followed by municipal sewage (18.73%) and phytoplankton pollution (15.13%) with relatively small percentage of unrecognized source. It is concluded that socioeconomic parameters assisting hydrochemistry parameters in multivariate statistics can improve the accuracy and certainty of pollution source identification, supporting decision makers to formulate strategies on protection of river water quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩益发布了新的文献求助10
刚刚
chy发布了新的文献求助10
刚刚
1秒前
科研通AI6应助小小采纳,获得30
1秒前
1秒前
红衣落花倾城完成签到,获得积分10
1秒前
1秒前
所所应助小小采纳,获得10
1秒前
小二郎应助小小采纳,获得10
1秒前
乐于助人大好人完成签到,获得积分10
2秒前
2秒前
kiko完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
可樂完成签到,获得积分10
3秒前
3秒前
无奈破茧完成签到,获得积分10
3秒前
jackson发布了新的文献求助10
3秒前
4秒前
4秒前
科研通AI6应助张张采纳,获得10
4秒前
大力山槐完成签到,获得积分10
5秒前
Achuia完成签到 ,获得积分10
5秒前
烟花应助liuqc采纳,获得10
5秒前
小壳儿完成签到 ,获得积分10
5秒前
合适的涫完成签到,获得积分10
5秒前
6秒前
情怀应助Keller采纳,获得10
6秒前
共享精神应助可樂采纳,获得10
6秒前
yvonne发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
合适的涫发布了新的文献求助10
8秒前
8秒前
8秒前
失眠朋友完成签到,获得积分10
9秒前
yudandan@CJLU发布了新的文献求助10
9秒前
李杰发布了新的文献求助10
9秒前
JamesPei应助jackson采纳,获得10
10秒前
番茄市长完成签到,获得积分10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611152
求助须知:如何正确求助?哪些是违规求助? 4695642
关于积分的说明 14887709
捐赠科研通 4724489
什么是DOI,文献DOI怎么找? 2545469
邀请新用户注册赠送积分活动 1510168
关于科研通互助平台的介绍 1473149