乳状液
吸附
微生物采油
表面张力
化学
钙不动杆菌
化学工程
肺表面活性物质
细菌
弹性(物理)
卤水
提高采收率
微生物
材料科学
有机化学
热力学
不动杆菌
复合材料
生物化学
生物
物理
抗生素
工程类
遗传学
作者
Ehsan Ganji-Azad,Aliyar Javadi,Moein Jahanbani Veshareh,Shahab Ayatollahi,R. Miller
出处
期刊:Colloids and interfaces
[Multidisciplinary Digital Publishing Institute]
日期:2021-11-19
卷期号:5 (4): 49-49
被引量:3
标识
DOI:10.3390/colloids5040049
摘要
For microbial enhanced oil recovery (MEOR), different mechanisms have been introduced. In some of these papers, the phenomena and mechanisms related to biosurfactants produced by certain microorganisms were discussed, while others studied the direct impacts of the properties of microorganisms on the related mechanisms. However, there are only very few papers dealing with the direct impacts of microorganisms on interfacial properties. In the present work, the interfacial properties of three bacteria MJ02 (Bacillus Subtilis type), MJ03 (Pseudomonas Aeruginosa type), and RAG1 (Acinetobacter Calcoaceticus type) with the hydrophobicity factors 2, 34, and 79% were studied, along with their direct impact on the water/heptane interfacial tension (IFT), dilational interfacial visco-elasticity, and emulsion stability. A relationship between the adsorption dynamics and IFT reduction with the hydrophobicity of the bacteria cells is found. The cells with highest hydrophobicity (79%) exhibit a very fast dynamic of adsorption and lead to relatively large interfacial elasticity values at short adsorption time. The maximum elasticity values (at the studied frequencies) are observed for bacteria cells with the intermediate hydrophobicity factor (34%); however, at longer adsorption times. The emulsification studies show that among the three bacteria, just RAG1 provides a good capability to stabilize crude oil in brine emulsions, which correlates with the observed fast dynamics of adsorption and high elasticity values at short times. The salinity of the aqueous phase is also discussed as an important factor for the emulsion formation and stabilization.
科研通智能强力驱动
Strongly Powered by AbleSci AI