亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Handling Constrained Multiobjective Optimization Problems via Bidirectional Coevolution

人口 数学优化 分类 约束(计算机辅助设计) 计算机科学 选择(遗传算法) 多目标优化 水准点(测量) 帕累托原理 交叉口(航空) 可行区 最优化问题 共同进化 数学 人工智能 算法 生物 工程类 航空航天工程 人口学 古生物学 社会学 地理 大地测量学 几何学
作者
Zhizhong Liu,Bing-Chuan Wang,Ke Tang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (10): 10163-10176 被引量:30
标识
DOI:10.1109/tcyb.2021.3056176
摘要

Constrained multiobjective optimization problems (CMOPs) involve both conflicting objective functions and various constraints. Due to the presence of constraints, CMOPs' Pareto-optimal solutions are very likely lying on constraint boundaries. The experience from the constrained single-objective optimization has shown that to quickly obtain such an optimal solution, the search should surround the boundary of the feasible region from both the feasible and infeasible sides. In this article, we extend this idea to cope with CMOPs and, accordingly, we propose a novel constrained multiobjective evolutionary algorithm with bidirectional coevolution, called BiCo. BiCo maintains two populations, that is: 1) the main population and 2) the archive population. To update the main population, the constraint-domination principle is equipped with an NSGA-II variant to move the population into the feasible region and then to guide the population toward the Pareto front (PF) from the feasible side of the search space. While for updating the archive population, a nondominated sorting procedure and an angle-based selection scheme are conducted in sequence to drive the population toward the PF within the infeasible region while maintaining good diversity. As a result, BiCo can get close to the PF from two complementary directions. In addition, to coordinate the interaction between the main and archive populations, in BiCo, a restricted mating selection mechanism is developed to choose appropriate mating parents. Comprehensive experiments have been conducted on three sets of CMOP benchmark functions and six real-world CMOPs. The experimental results suggest that BiCo can obtain quite competitive performance in comparison to eight state-of-the-art-constrained multiobjective evolutionary optimizers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
秋日思语发布了新的文献求助10
27秒前
张燕完成签到,获得积分10
48秒前
1分钟前
在水一方完成签到 ,获得积分10
1分钟前
秋日思语发布了新的文献求助10
1分钟前
英俊的铭应助热情高跟鞋采纳,获得10
2分钟前
这学真难读下去完成签到,获得积分10
2分钟前
2分钟前
2分钟前
AixLeft完成签到 ,获得积分10
2分钟前
热情高跟鞋完成签到,获得积分10
2分钟前
3分钟前
无花果发布了新的文献求助10
3分钟前
CodeCraft应助cube半肥半瘦采纳,获得10
3分钟前
4分钟前
观众发布了新的文献求助10
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
Yolanda_Xu完成签到 ,获得积分10
4分钟前
星辰大海应助1762120采纳,获得10
5分钟前
orixero应助余馨怡采纳,获得10
5分钟前
5分钟前
田様应助小橘子吃傻子采纳,获得10
5分钟前
1762120发布了新的文献求助10
5分钟前
6分钟前
6分钟前
7分钟前
andrele发布了新的文献求助10
7分钟前
mengran完成签到,获得积分10
7分钟前
赫连山菡完成签到,获得积分10
8分钟前
8分钟前
sobereva完成签到,获得积分10
8分钟前
8分钟前
余馨怡发布了新的文献求助10
9分钟前
sobereva发布了新的文献求助10
9分钟前
芸栖完成签到 ,获得积分10
9分钟前
10分钟前
10分钟前
11分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210860
求助须知:如何正确求助?哪些是违规求助? 4387506
关于积分的说明 13662882
捐赠科研通 4247463
什么是DOI,文献DOI怎么找? 2330295
邀请新用户注册赠送积分活动 1328047
关于科研通互助平台的介绍 1280842