In-situ prepared MIL-53(Fe)/BiOI photocatalyst for efficient degradation of tetracycline under visible-light driven photo-Fenton system: Investigation of performance and mechanism

光催化 单线态氧 可见光谱 热液循环 电子顺磁共振 降级(电信) 异质结 复合数 材料科学 化学工程 催化作用 光化学 化学 氧气 复合材料 光电子学 有机化学 物理 工程类 电信 核磁共振 计算机科学
作者
Yuhan Ma,Mingyu Li,Jingjing Jiang,Tian‐Ren Li,Xingyue Wang,Yueyu Song,Shuangshi Dong
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:870: 159524-159524 被引量:72
标识
DOI:10.1016/j.jallcom.2021.159524
摘要

In this work, a series of MIL-53(Fe)/BiOI composites were synthesized by a combined hydrothermal and facile co-precipitation method. The heterojunctions were further used as photocatalysts for tetracycline (TC) degradation in photo-Fenton system. The TC degradation rate constant for MIL-53(Fe)/BiOI (0.0906 min−1) was 2.1 and 2.3 times higher than that for MIL-53(Fe) (0.0432 min−1) and BiOI (0.0389 min−1), respectively. The photoelectrical characterization results suggested that the enhanced photocatalytic activity of the MIL-53(Fe)/BiOI composite was attributed to the high electron and holes separation efficiency. The scavenging experiment results and electron spin resonance analysis demonstrated that h+ and singlet oxygen were the main reactive species in the degradation process. The possible photo-Fenton degradation mechanism was further elucidated based on the band structures of MIL-53(Fe) and BiOI with the generation process of reactive species. This work provided a new idea to construct metal-organic-framework-based composite photocatalysts for photo-Fenton system, and it is also promising for the applications in environmental restoration and protection field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李创业发布了新的文献求助10
1秒前
炙热冰夏发布了新的文献求助10
1秒前
autobot1完成签到,获得积分10
1秒前
科研通AI5应助111采纳,获得10
1秒前
烟花应助Wang采纳,获得10
1秒前
曼尼发布了新的文献求助10
1秒前
赘婿应助桑姊采纳,获得10
3秒前
斯文败类应助Lvj采纳,获得10
3秒前
SYLH应助YHL采纳,获得10
3秒前
ranqi完成签到,获得积分10
3秒前
3秒前
4秒前
17808352679发布了新的文献求助10
4秒前
易生完成签到,获得积分10
5秒前
细腻曼冬完成签到 ,获得积分10
5秒前
5秒前
5秒前
9209完成签到 ,获得积分10
5秒前
6秒前
ranqi发布了新的文献求助10
6秒前
云落完成签到,获得积分10
6秒前
田様应助杨枝甘露樱桃采纳,获得10
6秒前
冲浪男孩226完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
现实的曼荷关注了科研通微信公众号
8秒前
8秒前
邓佳鑫Alan应助uniphoton采纳,获得10
8秒前
8秒前
英姑应助cc采纳,获得10
8秒前
MM完成签到,获得积分10
9秒前
lyn发布了新的文献求助10
9秒前
koipp发布了新的文献求助10
9秒前
Rebecca发布了新的文献求助10
10秒前
pinging应助愉快冰淇淋采纳,获得10
10秒前
不厌发布了新的文献求助100
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762