纳米笼
材料科学
阳极
复合数
电化学
化学工程
储能
纳米技术
复合材料
化学
电极
量子力学
物理
工程类
生物化学
物理化学
催化作用
功率(物理)
作者
Weili Liu,Lingyu Du,Shunlong Ju,Xueyi Cheng,Qiang Wu,Zheng Hu,Xuebin Yu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2021-03-15
卷期号:15 (3): 5679-5688
被引量:67
标识
DOI:10.1021/acsnano.1c00924
摘要
Red phosphorus (RP) has attracted great attention as a potential candidate for anode materials of high-energy density sodium-ion batteries (NIBs) due to its high theoretical capacity, appropriate working voltage, and natural abundance. However, the low electrical conductance and huge volumetric variation during the sodiation–desodiation process, causing poor rate performance and cyclability, have limited the practical application of RP in NIBs. Herein, we report a rational strategy to resolve these issues by encapsulating nanoscaled RP into conductive and networked carbon nanocages (denoted as RP@CNCs) using a combination of a phosphorus-amine based method and evacuation-filling process. The large interior cavities volume of CNCs and controllable solution-based method enable the ultrahigh RP loading amount (85.3 wt %) in the RP@CNC composite. Benefiting from the synergic effects of the interior cavities and conductive network, which afford high structure stability and rapid electron transport, the RP@CNC composite presents a high systematic capacity of 1363 mA h g–1 at a current density of 100 mA g–1 after 150 cycles, favorable high-rate capability, and splendid long-cycling performance with capacity retention over 80% after 1300 cycles at 5000 mA g–1. This prototypical design promises an efficient solution to maximize RP loading as well as to boost the electrochemical performance of RP-based anodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI