亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Temporal convolutional autoencoder for unsupervised anomaly detection in time series

自编码 异常检测 水准点(测量) 计算机科学 异常(物理) 人工智能 模式识别(心理学) 无监督学习 卷积神经网络 深度学习 系列(地层学) 时间序列 机器学习 古生物学 物理 大地测量学 凝聚态物理 生物 地理
作者
Markus Thill,Wolfgang Konen,Hao Wang,Thomas Bäck
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:112: 107751-107751 被引量:147
标识
DOI:10.1016/j.asoc.2021.107751
摘要

Learning temporal patterns in time series remains a challenging task up until today. Particularly for anomaly detection in time series, it is essential to learn the underlying structure of a system’s normal behavior. Periodic or quasiperiodic signals with complex temporal patterns make the problem even more challenging: Anomalies may be a hard-to-detect deviation from the normal recurring pattern. In this paper, we present TCN-AE, a temporal convolutional network autoencoder based on dilated convolutions. Contrary to many other anomaly detection algorithms, TCN-AE is trained in an unsupervised manner. The algorithm demonstrates its efficacy on a comprehensive real-world anomaly benchmark comprising electrocardiogram (ECG) recordings of patients with cardiac arrhythmia. TCN-AE significantly outperforms several other unsupervised state-of-the-art anomaly detection algorithms. Moreover, we investigate the contribution of the individual enhancements and show that each new ingredient improves the overall performance on the investigated benchmark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
大模型应助科研通管家采纳,获得30
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
Criminology34应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
4秒前
Criminology34应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助Lyhz采纳,获得10
6秒前
17秒前
跳跃猫咪完成签到 ,获得积分10
18秒前
隐形曼青应助清水烫春菜采纳,获得10
21秒前
24秒前
wheat完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
30秒前
haralee完成签到 ,获得积分10
35秒前
35秒前
量子星尘发布了新的文献求助10
37秒前
38秒前
熊大头发布了新的文献求助10
44秒前
48秒前
JamesPei应助熊大头采纳,获得10
54秒前
57秒前
lixuebin完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
1分钟前
汉堡包应助七安采纳,获得10
1分钟前
茶叶派发布了新的文献求助20
1分钟前
1分钟前
1分钟前
清水烫春菜完成签到,获得积分10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
2分钟前
fuyaoye2010完成签到,获得积分10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746703
求助须知:如何正确求助?哪些是违规求助? 5438025
关于积分的说明 15355789
捐赠科研通 4886737
什么是DOI,文献DOI怎么找? 2627400
邀请新用户注册赠送积分活动 1575879
关于科研通互助平台的介绍 1532607