理解力
语音识别
噪音(视频)
心理学
积极倾听
认知
背景噪声
言语感知
认知心理学
计算机科学
沟通
人工智能
神经科学
感知
电信
图像(数学)
程序设计语言
作者
Zhuoran Li,Jiawei Li,Bo Hong,Guido Nolte,Andreas K. Engel,Dan Zhang
出处
期刊:Cerebral Cortex
[Oxford University Press]
日期:2021-04-16
卷期号:31 (10): 4719-4729
被引量:17
标识
DOI:10.1093/cercor/bhab118
摘要
Abstract Comprehending speech in noise is an essential cognitive skill for verbal communication. However, it remains unclear how our brain adapts to the noisy environment to achieve comprehension. The present study investigated the neural mechanisms of speech comprehension in noise using an functional near-infrared spectroscopy-based inter-brain approach. A group of speakers was invited to tell real-life stories. The recorded speech audios were added with meaningless white noise at four signal-to-noise levels and then played to listeners. Results showed that speaker–listener neural couplings of listener’s left inferior frontal gyri (IFG), that is, sensorimotor system, and right middle temporal gyri (MTG), angular gyri (AG), that is, auditory system, were significantly higher in listening conditions than in the baseline. More importantly, the correlation between neural coupling of listener’s left IFG and the comprehension performance gradually became more positive with increasing noise level, indicating an adaptive role of sensorimotor system in noisy speech comprehension; however, the top behavioral correlations for the coupling of listener’s right MTG and AG were only obtained in mild noise conditions, indicating a different and less robust mechanism. To sum up, speaker–listener coupling analysis provides added value and new sight to understand the neural mechanism of speech-in-noise comprehension.
科研通智能强力驱动
Strongly Powered by AbleSci AI