A Distributed Method for Fast Mining Frequent Patterns From Big Data

计算机科学 大数据 数据挖掘
作者
Pengyu Huang,Wan-Shu Cheng,Ju-Chin Chen,Wen-Yu Chung,Young-Lin Chen,Kawuu W. Lin
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 135144-135159 被引量:5
标识
DOI:10.1109/access.2021.3115514
摘要

In recent years, knowledge discovery in databases provides a powerful capability to discover meaningful and useful information. For numerous real-life applications, frequent pattern mining and association rule mining have been extensively studied. In traditional mining algorithms, data are centralized and memory-resident. As a result of the large amount of data, bandwidth limitation, and energy limitations when applying these methods to distributed databases, especially in this era of big data, the performance is not effective enough. Hence, data mining on distributed environments has emerged as an important research area. To improve the performance, we propose a set of algorithms based on FP growth that discover FPs that are capable of providing fast and scalable service in distributed computing environments and a brief data structure to store items and counts to minimize the data for transmission on the network. To ensure completeness and execution capability, DistEclat and BigFIM were considered for the experiment comparison. Experiments show that the proposed method has superior cost-effectiveness for processing massive datasets and good capabilities under various experiment conditions. The proposed method on average required only 33% of the execution time and 45% of the transmission cost of DistEclat. Compared to BigFIM, The proposed method on average required 23.3% of the execution time and 14.2% of the transmission cost of BigFIM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岁寒发布了新的文献求助10
刚刚
小佛爷发布了新的文献求助10
刚刚
1秒前
yc关注了科研通微信公众号
1秒前
LeeY.完成签到,获得积分10
5秒前
7秒前
7秒前
8秒前
9秒前
9秒前
枫崝完成签到,获得积分10
11秒前
汉堡包应助累累的采纳,获得10
12秒前
12秒前
轩辕忆枫完成签到,获得积分10
13秒前
昀松关注了科研通微信公众号
14秒前
他也蓝发布了新的文献求助10
14秒前
14秒前
卷心菜宝发布了新的文献求助10
14秒前
hu完成签到 ,获得积分10
15秒前
glq发布了新的文献求助10
16秒前
rundstedt完成签到,获得积分10
18秒前
找回自己发布了新的文献求助10
19秒前
大方乘云完成签到 ,获得积分10
20秒前
科研通AI2S应助聪明紫山采纳,获得10
20秒前
21秒前
彭于晏应助EMI采纳,获得10
21秒前
大风完成签到,获得积分10
22秒前
李健的小迷弟应助哒哒采纳,获得10
23秒前
23秒前
FrozNineTivus完成签到,获得积分10
23秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
Owen应助科研通管家采纳,获得10
24秒前
英姑应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得30
25秒前
25秒前
ding应助科研通管家采纳,获得30
25秒前
25秒前
桐桐应助科研通管家采纳,获得10
25秒前
在水一方应助科研通管家采纳,获得20
25秒前
ding应助科研通管家采纳,获得10
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125633
求助须知:如何正确求助?哪些是违规求助? 2775924
关于积分的说明 7728426
捐赠科研通 2431401
什么是DOI,文献DOI怎么找? 1291999
科研通“疑难数据库(出版商)”最低求助积分说明 622301
版权声明 600376