The application of machine learning algorithms in predicting the length of stay following femoral neck fracture

医学 逐步回归 算法 围手术期 机器学习 计算机科学 线性回归 外科 内科学
作者
Hao Zhong,Bingpu Wang,Dawei Wang,Zirui Liu,Cong Xing,Yu Wu,Qiang Gao,Shibo Zhu,Haodong Qu,Zeyu Jia,Zhigang Qu,Guangzhi Ning,Shiqing Feng
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:155: 104572-104572 被引量:21
标识
DOI:10.1016/j.ijmedinf.2021.104572
摘要

Femoral neck fracture is a frequent cause of hospitalization, and length of stay is an important marker of hospital cost and quality of care provided. As an extension of traditional statistical methods, machine learning provides the possibility of accurately predicting the length of hospital stay. The aim of this paper is to retrospectively identify predictive factors of the length of hospital stay (LOS) and predict the postoperative LOS by using machine learning algorithms. Based on the admission and perioperative data of the patients, linear regression was used to analyze the predictive factors of the LOS. Multiple machine learning models were developed, and the performance of different models was compared. Stepwise linear regression showed that preoperative calcium level (P = 0.017) and preoperative lymphocyte percentage (P = 0.007), in addition to intraoperative bleeding (p = 0.041), glucose and sodium chloride infusion after surgery (P = 0.019), Charlson Comorbidity Index (p = 0.007) and BMI (P = 0.031), were significant predictors of LOS. The best performing model was the principal component regression (PCR) with an optimal MAE (1.525) and a proportion of prediction error within 3 days of 90.91%. Excessive intravenous glucose and sodium chloride infusion after surgery, preoperative hypocalcemia, preoperative high percentages of lymphocytes, excessive intraoperative bleeding, lower BMI and higher CCI scores were related to prolonged LOS by using linear regression. Machine learning could accurately predict the postoperative LOS. This information allows hospital administrators to plan reasonable resource allocation to fulfill demand, leading to direct care quality improvement and more reasonable use of scarce resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_X894JZ完成签到 ,获得积分10
刚刚
huangyanan0120完成签到,获得积分10
2秒前
知了发布了新的文献求助10
2秒前
hinatazaka46应助细心怜寒采纳,获得10
5秒前
陈琼5完成签到,获得积分10
5秒前
852应助他的二仙桥采纳,获得10
6秒前
fang完成签到,获得积分20
8秒前
hlbbb完成签到 ,获得积分20
11秒前
16秒前
今后应助xx-xxx采纳,获得10
16秒前
17秒前
17秒前
lihongjie完成签到,获得积分10
17秒前
19秒前
cc发布了新的文献求助10
20秒前
小汪完成签到,获得积分10
21秒前
22秒前
23秒前
lineduck发布了新的文献求助10
24秒前
KDINO发布了新的文献求助10
28秒前
无名老大应助小汪采纳,获得10
30秒前
33秒前
渔舟唱晚应助知了采纳,获得10
36秒前
甘牡娟完成签到,获得积分10
38秒前
39秒前
41秒前
酷波er应助hhh采纳,获得10
42秒前
xx-xxx发布了新的文献求助10
42秒前
白日梦想家完成签到,获得积分20
43秒前
杳鸢应助tmuguoli采纳,获得10
44秒前
JSM驳回了yuki应助
44秒前
YC发布了新的文献求助30
45秒前
微笑采文完成签到 ,获得积分10
46秒前
杳鸢应助夏目家的猪喵采纳,获得10
46秒前
科研通AI2S应助hhximgg采纳,获得30
46秒前
打打应助YC采纳,获得30
57秒前
zhouyunan发布了新的文献求助10
59秒前
lili完成签到,获得积分10
1分钟前
我不困完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
Mercury and Silver Mining in the Colonial Atlantic 300
Studi sul Vicino Oriente antico dedicati alla memoria di Luigi Cagni vol.1 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3374491
求助须知:如何正确求助?哪些是违规求助? 2991300
关于积分的说明 8745025
捐赠科研通 2675160
什么是DOI,文献DOI怎么找? 1465484
科研通“疑难数据库(出版商)”最低求助积分说明 677850
邀请新用户注册赠送积分活动 669473