Asymmetrical dynamics of epidemic propagation and awareness diffusion in multiplex networks

流行病模型 统计物理学 复杂网络 扩散 计算机科学 传输(电信) 蒙特卡罗方法 计量经济学 风险分析(工程) 物理 数学 统计 医学 环境卫生 电信 人口 万维网 热力学
作者
Mengfeng Sun,Yizhou Tao,Xinchu Fu
出处
期刊:Chaos [American Institute of Physics]
卷期号:31 (9) 被引量:17
标识
DOI:10.1063/5.0061086
摘要

To better explore asymmetrical interaction between epidemic spreading and awareness diffusion in multiplex networks, we distinguish susceptibility and infectivity between aware and unaware individuals, relax the degree of immunization, and take into account three types of generation mechanisms of individual awareness. We use the probability trees to depict the transitions between distinct states for nodes and then write the evolution equation of each state by means of the microscopic Markovian chain approach (MMCA). Based on the MMCA, we theoretically analyze the possible steady states and calculate the critical threshold of epidemics, related to the structure of epidemic networks, the awareness diffusion, and their coupling configuration. The achieved analytical results of the mean-field approach are consistent with those of the numerical Monte Carlo simulations. Through the theoretical analysis and numerical simulations, we find that global awareness can reduce the final scale of infection when the regulatory factor of the global awareness ratio is less than the average degree of the epidemic network but it cannot alter the onset of epidemics. Furthermore, the introduction of self-awareness originating from infected individuals not only reduces the epidemic prevalence but also raises the epidemic threshold, which tells us that it is crucial to enhance the early warning of symptomatic individuals during pandemic outbreaks. These results give us a more comprehensive and deep understanding of the complicated interaction between epidemic transmission and awareness diffusion and also provide some practical and effective recommendations for the prevention and control of epidemics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡含海完成签到,获得积分10
刚刚
juuui发布了新的文献求助10
刚刚
cij123给cij123的求助进行了留言
刚刚
ccm发布了新的文献求助10
刚刚
狗十七发布了新的文献求助10
1秒前
Liaoluqing完成签到,获得积分10
2秒前
2秒前
魏行方发布了新的文献求助10
2秒前
小二郎应助乐观的颦采纳,获得10
2秒前
莫琳完成签到 ,获得积分10
2秒前
超级觅夏发布了新的文献求助10
3秒前
3秒前
4秒前
菠萝发布了新的文献求助10
5秒前
5秒前
征途完成签到 ,获得积分10
6秒前
lmm发布了新的文献求助10
6秒前
知性冰淇淋完成签到,获得积分10
6秒前
星辰大海应助沉静的砖头采纳,获得10
7秒前
9秒前
sss发布了新的文献求助10
9秒前
LLL完成签到 ,获得积分10
10秒前
10秒前
上官若男应助核桃采纳,获得10
10秒前
东华帝君完成签到,获得积分10
11秒前
zhonglv7应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
yyi1应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
彭于彦祖应助科研通管家采纳,获得150
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
lu应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
yyi1应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
tuanheqi应助科研通管家采纳,获得150
12秒前
852应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360281
求助须知:如何正确求助?哪些是违规求助? 4490974
关于积分的说明 13980731
捐赠科研通 4393548
什么是DOI,文献DOI怎么找? 2413487
邀请新用户注册赠送积分活动 1406306
关于科研通互助平台的介绍 1380773