Asymmetrical dynamics of epidemic propagation and awareness diffusion in multiplex networks

流行病模型 统计物理学 复杂网络 扩散 计算机科学 传输(电信) 蒙特卡罗方法 爆发 大流行 计量经济学 物理 数学 2019年冠状病毒病(COVID-19) 统计 生物 病毒学 医学 环境卫生 电信 疾病 热力学 万维网 病理 传染病(医学专业) 人口
作者
Mengfeng Sun,Yizhou Tao,Xinchu Fu
出处
期刊:Chaos [American Institute of Physics]
卷期号:31 (9) 被引量:12
标识
DOI:10.1063/5.0061086
摘要

To better explore asymmetrical interaction between epidemic spreading and awareness diffusion in multiplex networks, we distinguish susceptibility and infectivity between aware and unaware individuals, relax the degree of immunization, and take into account three types of generation mechanisms of individual awareness. We use the probability trees to depict the transitions between distinct states for nodes and then write the evolution equation of each state by means of the microscopic Markovian chain approach (MMCA). Based on the MMCA, we theoretically analyze the possible steady states and calculate the critical threshold of epidemics, related to the structure of epidemic networks, the awareness diffusion, and their coupling configuration. The achieved analytical results of the mean-field approach are consistent with those of the numerical Monte Carlo simulations. Through the theoretical analysis and numerical simulations, we find that global awareness can reduce the final scale of infection when the regulatory factor of the global awareness ratio is less than the average degree of the epidemic network but it cannot alter the onset of epidemics. Furthermore, the introduction of self-awareness originating from infected individuals not only reduces the epidemic prevalence but also raises the epidemic threshold, which tells us that it is crucial to enhance the early warning of symptomatic individuals during pandemic outbreaks. These results give us a more comprehensive and deep understanding of the complicated interaction between epidemic transmission and awareness diffusion and also provide some practical and effective recommendations for the prevention and control of epidemics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulyt完成签到 ,获得积分10
1秒前
2秒前
德德发布了新的文献求助10
3秒前
五十一笑声应助阿巴阿巴采纳,获得200
4秒前
4秒前
4秒前
4秒前
爆米花应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得30
5秒前
小苹果发布了新的文献求助10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得30
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
6秒前
7秒前
Orange应助yatou5651采纳,获得30
7秒前
枫枫829完成签到 ,获得积分10
8秒前
风中听枫发布了新的文献求助10
8秒前
情怀应助德德采纳,获得10
8秒前
kaneki发布了新的文献求助10
9秒前
Moonboss完成签到 ,获得积分10
10秒前
fml发布了新的文献求助10
13秒前
桐桐应助chichi采纳,获得10
13秒前
14秒前
沂静发布了新的文献求助10
14秒前
kaneki完成签到,获得积分10
15秒前
小马甲应助...采纳,获得10
15秒前
好困应助52cc000采纳,获得20
16秒前
16秒前
研友_VZG7GZ应助LZH采纳,获得10
17秒前
18秒前
waterimagic2发布了新的文献求助10
19秒前
完美世界应助积极断缘采纳,获得10
19秒前
20秒前
didi完成签到 ,获得积分10
20秒前
Billy发布了新的文献求助10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149155
求助须知:如何正确求助?哪些是违规求助? 2800230
关于积分的说明 7839164
捐赠科研通 2457781
什么是DOI,文献DOI怎么找? 1308112
科研通“疑难数据库(出版商)”最低求助积分说明 628408
版权声明 601706