Asymmetrical dynamics of epidemic propagation and awareness diffusion in multiplex networks

流行病模型 统计物理学 复杂网络 扩散 计算机科学 传输(电信) 蒙特卡罗方法 计量经济学 风险分析(工程) 物理 数学 统计 医学 环境卫生 电信 人口 万维网 热力学
作者
Mengfeng Sun,Yizhou Tao,Xinchu Fu
出处
期刊:Chaos [American Institute of Physics]
卷期号:31 (9) 被引量:17
标识
DOI:10.1063/5.0061086
摘要

To better explore asymmetrical interaction between epidemic spreading and awareness diffusion in multiplex networks, we distinguish susceptibility and infectivity between aware and unaware individuals, relax the degree of immunization, and take into account three types of generation mechanisms of individual awareness. We use the probability trees to depict the transitions between distinct states for nodes and then write the evolution equation of each state by means of the microscopic Markovian chain approach (MMCA). Based on the MMCA, we theoretically analyze the possible steady states and calculate the critical threshold of epidemics, related to the structure of epidemic networks, the awareness diffusion, and their coupling configuration. The achieved analytical results of the mean-field approach are consistent with those of the numerical Monte Carlo simulations. Through the theoretical analysis and numerical simulations, we find that global awareness can reduce the final scale of infection when the regulatory factor of the global awareness ratio is less than the average degree of the epidemic network but it cannot alter the onset of epidemics. Furthermore, the introduction of self-awareness originating from infected individuals not only reduces the epidemic prevalence but also raises the epidemic threshold, which tells us that it is crucial to enhance the early warning of symptomatic individuals during pandemic outbreaks. These results give us a more comprehensive and deep understanding of the complicated interaction between epidemic transmission and awareness diffusion and also provide some practical and effective recommendations for the prevention and control of epidemics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
myheat完成签到,获得积分10
1秒前
勤奋安波完成签到,获得积分10
1秒前
安安发布了新的文献求助10
1秒前
Amazing_p完成签到,获得积分10
1秒前
1秒前
1秒前
张千万完成签到,获得积分10
2秒前
11发布了新的文献求助40
2秒前
西西完成签到,获得积分10
3秒前
QWE发布了新的文献求助10
3秒前
Jian发布了新的文献求助10
3秒前
笨维发布了新的文献求助10
3秒前
3秒前
好多鱼爱学习完成签到 ,获得积分10
3秒前
屈昭阳发布了新的文献求助10
4秒前
baobaoxiong完成签到,获得积分10
4秒前
4秒前
4秒前
蒋若风发布了新的文献求助10
4秒前
5秒前
songyk完成签到,获得积分10
5秒前
zhoumin完成签到,获得积分10
6秒前
6秒前
高高问夏完成签到,获得积分10
7秒前
7秒前
8秒前
jingjing完成签到 ,获得积分10
8秒前
9秒前
君尧发布了新的文献求助10
9秒前
FashionBoy应助王宽宽宽采纳,获得10
9秒前
9秒前
科研通AI6应助王志新采纳,获得10
9秒前
10秒前
魏家乐完成签到,获得积分10
10秒前
wyuwqhjp发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
酷酷怀曼完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836