Asymmetrical dynamics of epidemic propagation and awareness diffusion in multiplex networks

流行病模型 统计物理学 复杂网络 扩散 计算机科学 传输(电信) 蒙特卡罗方法 计量经济学 风险分析(工程) 物理 数学 统计 医学 环境卫生 电信 人口 万维网 热力学
作者
Mengfeng Sun,Yizhou Tao,Xinchu Fu
出处
期刊:Chaos [American Institute of Physics]
卷期号:31 (9) 被引量:13
标识
DOI:10.1063/5.0061086
摘要

To better explore asymmetrical interaction between epidemic spreading and awareness diffusion in multiplex networks, we distinguish susceptibility and infectivity between aware and unaware individuals, relax the degree of immunization, and take into account three types of generation mechanisms of individual awareness. We use the probability trees to depict the transitions between distinct states for nodes and then write the evolution equation of each state by means of the microscopic Markovian chain approach (MMCA). Based on the MMCA, we theoretically analyze the possible steady states and calculate the critical threshold of epidemics, related to the structure of epidemic networks, the awareness diffusion, and their coupling configuration. The achieved analytical results of the mean-field approach are consistent with those of the numerical Monte Carlo simulations. Through the theoretical analysis and numerical simulations, we find that global awareness can reduce the final scale of infection when the regulatory factor of the global awareness ratio is less than the average degree of the epidemic network but it cannot alter the onset of epidemics. Furthermore, the introduction of self-awareness originating from infected individuals not only reduces the epidemic prevalence but also raises the epidemic threshold, which tells us that it is crucial to enhance the early warning of symptomatic individuals during pandemic outbreaks. These results give us a more comprehensive and deep understanding of the complicated interaction between epidemic transmission and awareness diffusion and also provide some practical and effective recommendations for the prevention and control of epidemics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
化学狗完成签到,获得积分10
2秒前
yud完成签到 ,获得积分10
2秒前
3秒前
拼搏思卉发布了新的文献求助10
3秒前
4秒前
雨碎寒江完成签到,获得积分10
4秒前
5秒前
会飞的木头完成签到,获得积分10
5秒前
雪白涵山发布了新的文献求助20
5秒前
shouyu29应助MADKAI采纳,获得10
5秒前
Seiswan发布了新的文献求助10
5秒前
小小菜鸟完成签到,获得积分10
6秒前
6秒前
西西弗斯完成签到,获得积分10
6秒前
KT2440完成签到,获得积分10
7秒前
顾阿秀发布了新的文献求助10
7秒前
7秒前
7秒前
gnr2000完成签到,获得积分0
7秒前
8秒前
8秒前
BareBear应助赖道之采纳,获得10
8秒前
LEMON完成签到,获得积分10
8秒前
Ava应助buuyoo采纳,获得10
9秒前
情怀应助liuwei采纳,获得10
9秒前
aaefv完成签到,获得积分10
9秒前
小小菜鸟发布了新的文献求助10
9秒前
深情安青应助123采纳,获得10
9秒前
赫初晴完成签到 ,获得积分10
9秒前
平淡的亦丝应助明研采纳,获得20
9秒前
11秒前
库外发布了新的文献求助10
12秒前
汉堡包应助清新的冷松采纳,获得10
12秒前
从心应助LiShin采纳,获得10
12秒前
帅气的听莲完成签到,获得积分10
12秒前
英姑应助Areslcy采纳,获得10
12秒前
善学以致用应助zxz采纳,获得10
13秒前
whatever应助luoshi采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762