End-to-end automated body composition analyses with integrated quality control for opportunistic assessment of sarcopenia in CT

医学 神经组阅片室 分割 管道(软件) 肌萎缩 卷积神经网络 核医学 放射科 人工智能 计算机科学 内科学 神经学 精神科 程序设计语言
作者
S. Nowak,Mirko Theis,Barbara Wichtmann,Anton Faron,Matthias F. Froelich,Fabian Tollens,Helena L. Geißler,Wolfgang Block,Julian A. Luetkens,Ulrike Attenberger,Alois M. Sprinkart
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (5): 3142-3151 被引量:23
标识
DOI:10.1007/s00330-021-08313-x
摘要

To develop a pipeline for automated body composition analysis and skeletal muscle assessment with integrated quality control for large-scale application in opportunistic imaging.First, a convolutional neural network for extraction of a single slice at the L3/L4 lumbar level was developed on CT scans of 240 patients applying the nnU-Net framework. Second, a 2D competitive dense fully convolutional U-Net for segmentation of visceral and subcutaneous adipose tissue (VAT, SAT), skeletal muscle (SM), and subsequent determination of fatty muscle fraction (FMF) was developed on single CT slices of 1143 patients. For both steps, automated quality control was integrated by a logistic regression model classifying the presence of L3/L4 and a linear regression model predicting the segmentation quality in terms of Dice score. To evaluate the performance of the entire pipeline end-to-end, body composition metrics, and FMF were compared to manual analyses including 364 patients from two centers.Excellent results were observed for slice extraction (z-deviation = 2.46 ± 6.20 mm) and segmentation (Dice score for SM = 0.95 ± 0.04, VAT = 0.98 ± 0.02, SAT = 0.97 ± 0.04) on the dual-center test set excluding cases with artifacts due to metallic implants. No data were excluded for end-to-end performance analyses. With a restrictive setting of the integrated segmentation quality control, 39 of 364 patients were excluded containing 8 cases with metallic implants. This setting ensured a high agreement between manual and fully automated analyses with mean relative area deviations of ΔSM = 3.3 ± 4.1%, ΔVAT = 3.0 ± 4.7%, ΔSAT = 2.7 ± 4.3%, and ΔFMF = 4.3 ± 4.4%.This study presents an end-to-end automated deep learning pipeline for large-scale opportunistic assessment of body composition metrics and sarcopenia biomarkers in clinical routine.• Body composition metrics and skeletal muscle quality can be opportunistically determined from routine abdominal CT scans. • A pipeline consisting of two convolutional neural networks allows an end-to-end automated analysis. • Machine-learning-based quality control ensures high agreement between manual and automatic analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
5秒前
JamesPei应助杨震采纳,获得10
5秒前
5秒前
xuan发布了新的文献求助10
6秒前
Yuki酱发布了新的文献求助10
6秒前
旺仔发布了新的文献求助10
8秒前
9秒前
9秒前
hj发布了新的文献求助10
10秒前
呜哈哈发布了新的文献求助60
11秒前
12秒前
13秒前
Galaxy完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
溜铭钛完成签到 ,获得积分10
17秒前
19秒前
20秒前
20秒前
浮游应助外向的宛白采纳,获得10
21秒前
任团完成签到,获得积分10
23秒前
xuan完成签到,获得积分10
23秒前
hj发布了新的文献求助10
24秒前
涔雨发布了新的文献求助10
25秒前
纸速度发布了新的文献求助10
26秒前
WB87应助科研通管家采纳,获得10
26秒前
柏林寒冬应助科研通管家采纳,获得10
26秒前
Jasper应助科研通管家采纳,获得20
26秒前
老阎应助科研通管家采纳,获得30
26秒前
26秒前
Zx_1993应助科研通管家采纳,获得10
26秒前
Orange应助科研通管家采纳,获得10
26秒前
Lucas应助科研通管家采纳,获得10
26秒前
Hello应助科研通管家采纳,获得10
26秒前
李健应助科研通管家采纳,获得10
26秒前
小蘑菇应助科研通管家采纳,获得10
26秒前
WB87应助科研通管家采纳,获得10
26秒前
科目三应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425307
求助须知:如何正确求助?哪些是违规求助? 4539385
关于积分的说明 14167531
捐赠科研通 4456762
什么是DOI,文献DOI怎么找? 2444320
邀请新用户注册赠送积分活动 1435292
关于科研通互助平台的介绍 1412721