已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

End-to-end automated body composition analyses with integrated quality control for opportunistic assessment of sarcopenia in CT

医学 神经组阅片室 分割 管道(软件) 肌萎缩 卷积神经网络 核医学 放射科 人工智能 计算机科学 内科学 神经学 精神科 程序设计语言
作者
S. Nowak,Mirko Theis,Barbara Wichtmann,Anton Faron,Matthias F. Froelich,Fabian Tollens,Helena L. Geißler,Wolfgang Block,Julian A. Luetkens,Ulrike Attenberger,Alois M. Sprinkart
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (5): 3142-3151 被引量:23
标识
DOI:10.1007/s00330-021-08313-x
摘要

To develop a pipeline for automated body composition analysis and skeletal muscle assessment with integrated quality control for large-scale application in opportunistic imaging.First, a convolutional neural network for extraction of a single slice at the L3/L4 lumbar level was developed on CT scans of 240 patients applying the nnU-Net framework. Second, a 2D competitive dense fully convolutional U-Net for segmentation of visceral and subcutaneous adipose tissue (VAT, SAT), skeletal muscle (SM), and subsequent determination of fatty muscle fraction (FMF) was developed on single CT slices of 1143 patients. For both steps, automated quality control was integrated by a logistic regression model classifying the presence of L3/L4 and a linear regression model predicting the segmentation quality in terms of Dice score. To evaluate the performance of the entire pipeline end-to-end, body composition metrics, and FMF were compared to manual analyses including 364 patients from two centers.Excellent results were observed for slice extraction (z-deviation = 2.46 ± 6.20 mm) and segmentation (Dice score for SM = 0.95 ± 0.04, VAT = 0.98 ± 0.02, SAT = 0.97 ± 0.04) on the dual-center test set excluding cases with artifacts due to metallic implants. No data were excluded for end-to-end performance analyses. With a restrictive setting of the integrated segmentation quality control, 39 of 364 patients were excluded containing 8 cases with metallic implants. This setting ensured a high agreement between manual and fully automated analyses with mean relative area deviations of ΔSM = 3.3 ± 4.1%, ΔVAT = 3.0 ± 4.7%, ΔSAT = 2.7 ± 4.3%, and ΔFMF = 4.3 ± 4.4%.This study presents an end-to-end automated deep learning pipeline for large-scale opportunistic assessment of body composition metrics and sarcopenia biomarkers in clinical routine.• Body composition metrics and skeletal muscle quality can be opportunistically determined from routine abdominal CT scans. • A pipeline consisting of two convolutional neural networks allows an end-to-end automated analysis. • Machine-learning-based quality control ensures high agreement between manual and automatic analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助April采纳,获得10
1秒前
1秒前
岂曰无衣完成签到 ,获得积分10
2秒前
李健的小迷弟应助哦哦哦采纳,获得10
4秒前
呼斯冷发布了新的文献求助10
5秒前
CipherSage应助msp采纳,获得10
6秒前
6秒前
领导范儿应助小明采纳,获得10
12秒前
陆一完成签到 ,获得积分10
12秒前
xu发布了新的文献求助10
13秒前
大个应助柍踏采纳,获得10
14秒前
科研通AI6.1应助王先生采纳,获得10
15秒前
16秒前
18秒前
18秒前
rwq完成签到 ,获得积分10
19秒前
哦哦哦发布了新的文献求助10
20秒前
wab完成签到,获得积分0
21秒前
jimskylxk发布了新的文献求助10
21秒前
研友_VZG7GZ应助柍踏采纳,获得10
23秒前
bobokan应助义气翩跹采纳,获得10
23秒前
文慧发布了新的文献求助10
25秒前
共享精神应助苗条煎饼采纳,获得10
25秒前
26秒前
28秒前
宋芽芽u完成签到 ,获得积分0
28秒前
我爱科研完成签到 ,获得积分10
29秒前
小二郎应助bruna采纳,获得10
30秒前
倪鱼发布了新的文献求助10
31秒前
33秒前
koalafish发布了新的文献求助10
33秒前
36秒前
lolly发布了新的文献求助10
36秒前
端庄冷荷完成签到 ,获得积分10
38秒前
Gypsy完成签到 ,获得积分10
39秒前
40秒前
Lucas应助jjdeng采纳,获得10
41秒前
玫瑰先森完成签到,获得积分10
43秒前
Akim应助小明采纳,获得10
43秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771799
求助须知:如何正确求助?哪些是违规求助? 5593934
关于积分的说明 15428394
捐赠科研通 4905053
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587067
关于科研通互助平台的介绍 1541958