End-to-end automated body composition analyses with integrated quality control for opportunistic assessment of sarcopenia in CT

医学 神经组阅片室 分割 管道(软件) 肌萎缩 卷积神经网络 核医学 放射科 人工智能 计算机科学 内科学 神经学 精神科 程序设计语言
作者
S. Nowak,Mirko Theis,Barbara Wichtmann,Anton Faron,Matthias F. Froelich,Fabian Tollens,Helena L. Geißler,Wolfgang Block,Julian A. Luetkens,Ulrike Attenberger,Alois M. Sprinkart
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (5): 3142-3151 被引量:23
标识
DOI:10.1007/s00330-021-08313-x
摘要

To develop a pipeline for automated body composition analysis and skeletal muscle assessment with integrated quality control for large-scale application in opportunistic imaging.First, a convolutional neural network for extraction of a single slice at the L3/L4 lumbar level was developed on CT scans of 240 patients applying the nnU-Net framework. Second, a 2D competitive dense fully convolutional U-Net for segmentation of visceral and subcutaneous adipose tissue (VAT, SAT), skeletal muscle (SM), and subsequent determination of fatty muscle fraction (FMF) was developed on single CT slices of 1143 patients. For both steps, automated quality control was integrated by a logistic regression model classifying the presence of L3/L4 and a linear regression model predicting the segmentation quality in terms of Dice score. To evaluate the performance of the entire pipeline end-to-end, body composition metrics, and FMF were compared to manual analyses including 364 patients from two centers.Excellent results were observed for slice extraction (z-deviation = 2.46 ± 6.20 mm) and segmentation (Dice score for SM = 0.95 ± 0.04, VAT = 0.98 ± 0.02, SAT = 0.97 ± 0.04) on the dual-center test set excluding cases with artifacts due to metallic implants. No data were excluded for end-to-end performance analyses. With a restrictive setting of the integrated segmentation quality control, 39 of 364 patients were excluded containing 8 cases with metallic implants. This setting ensured a high agreement between manual and fully automated analyses with mean relative area deviations of ΔSM = 3.3 ± 4.1%, ΔVAT = 3.0 ± 4.7%, ΔSAT = 2.7 ± 4.3%, and ΔFMF = 4.3 ± 4.4%.This study presents an end-to-end automated deep learning pipeline for large-scale opportunistic assessment of body composition metrics and sarcopenia biomarkers in clinical routine.• Body composition metrics and skeletal muscle quality can be opportunistically determined from routine abdominal CT scans. • A pipeline consisting of two convolutional neural networks allows an end-to-end automated analysis. • Machine-learning-based quality control ensures high agreement between manual and automatic analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
榴莲大佬发布了新的文献求助10
1秒前
豆丁小猫完成签到,获得积分10
1秒前
Orange应助ChemGuo采纳,获得10
1秒前
rr完成签到,获得积分10
2秒前
威武的夜绿完成签到,获得积分10
3秒前
炼金术士小彩虹完成签到,获得积分20
3秒前
思源应助猜对了就告诉你采纳,获得10
3秒前
3秒前
3秒前
Orange应助nieanicole采纳,获得200
3秒前
好运大王完成签到,获得积分10
4秒前
4秒前
CodeCraft应助黄大师采纳,获得10
4秒前
拼搏向上发布了新的文献求助10
5秒前
5秒前
FACEISIN完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
JamesPei应助个性湘采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
orixero应助zcx采纳,获得10
7秒前
小鱼完成签到,获得积分10
7秒前
Gins完成签到,获得积分10
8秒前
9秒前
AQI发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
小马甲应助着急的傲菡采纳,获得10
10秒前
10秒前
nn完成签到,获得积分20
10秒前
爆米花应助jialin采纳,获得10
10秒前
FMING完成签到,获得积分10
10秒前
10秒前
小鱼发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735796
求助须知:如何正确求助?哪些是违规求助? 5362763
关于积分的说明 15331376
捐赠科研通 4879965
什么是DOI,文献DOI怎么找? 2622412
邀请新用户注册赠送积分活动 1571403
关于科研通互助平台的介绍 1528229