End-to-end automated body composition analyses with integrated quality control for opportunistic assessment of sarcopenia in CT

医学 神经组阅片室 分割 管道(软件) 肌萎缩 卷积神经网络 核医学 放射科 人工智能 计算机科学 内科学 神经学 精神科 程序设计语言
作者
S. Nowak,Mirko Theis,Barbara Wichtmann,Anton Faron,Matthias F. Froelich,Fabian Tollens,Helena L. Geißler,Wolfgang Block,Julian A. Luetkens,Ulrike Attenberger,Alois M. Sprinkart
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (5): 3142-3151 被引量:23
标识
DOI:10.1007/s00330-021-08313-x
摘要

To develop a pipeline for automated body composition analysis and skeletal muscle assessment with integrated quality control for large-scale application in opportunistic imaging.First, a convolutional neural network for extraction of a single slice at the L3/L4 lumbar level was developed on CT scans of 240 patients applying the nnU-Net framework. Second, a 2D competitive dense fully convolutional U-Net for segmentation of visceral and subcutaneous adipose tissue (VAT, SAT), skeletal muscle (SM), and subsequent determination of fatty muscle fraction (FMF) was developed on single CT slices of 1143 patients. For both steps, automated quality control was integrated by a logistic regression model classifying the presence of L3/L4 and a linear regression model predicting the segmentation quality in terms of Dice score. To evaluate the performance of the entire pipeline end-to-end, body composition metrics, and FMF were compared to manual analyses including 364 patients from two centers.Excellent results were observed for slice extraction (z-deviation = 2.46 ± 6.20 mm) and segmentation (Dice score for SM = 0.95 ± 0.04, VAT = 0.98 ± 0.02, SAT = 0.97 ± 0.04) on the dual-center test set excluding cases with artifacts due to metallic implants. No data were excluded for end-to-end performance analyses. With a restrictive setting of the integrated segmentation quality control, 39 of 364 patients were excluded containing 8 cases with metallic implants. This setting ensured a high agreement between manual and fully automated analyses with mean relative area deviations of ΔSM = 3.3 ± 4.1%, ΔVAT = 3.0 ± 4.7%, ΔSAT = 2.7 ± 4.3%, and ΔFMF = 4.3 ± 4.4%.This study presents an end-to-end automated deep learning pipeline for large-scale opportunistic assessment of body composition metrics and sarcopenia biomarkers in clinical routine.• Body composition metrics and skeletal muscle quality can be opportunistically determined from routine abdominal CT scans. • A pipeline consisting of two convolutional neural networks allows an end-to-end automated analysis. • Machine-learning-based quality control ensures high agreement between manual and automatic analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
脑洞疼应助自信大雁采纳,获得10
2秒前
heiner发布了新的文献求助30
2秒前
HH完成签到,获得积分10
3秒前
3秒前
搜集达人应助美丽心情采纳,获得10
3秒前
4秒前
fukesi完成签到,获得积分10
4秒前
WTC完成签到 ,获得积分10
4秒前
Orange应助旷野采纳,获得10
4秒前
yanxuhuan完成签到 ,获得积分10
4秒前
yan123发布了新的文献求助10
5秒前
方便面条子完成签到 ,获得积分10
5秒前
5秒前
zzz发布了新的文献求助10
6秒前
6秒前
烂漫臻发布了新的文献求助10
6秒前
小肥吴发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
Ava应助sujustin333采纳,获得10
8秒前
heiner完成签到,获得积分10
8秒前
9秒前
9秒前
牧觅云发布了新的文献求助10
9秒前
9秒前
爱吃冻梨发布了新的文献求助20
9秒前
Mississippiecho完成签到,获得积分10
9秒前
852应助路途遥远采纳,获得10
10秒前
rd完成签到 ,获得积分10
11秒前
852应助含糊的凝芙采纳,获得10
11秒前
认真飞瑶发布了新的文献求助10
11秒前
Steven发布了新的文献求助10
12秒前
jjj应助玩命的猕猴桃采纳,获得20
12秒前
slp发布了新的文献求助10
12秒前
司空晓山发布了新的文献求助30
12秒前
dd完成签到,获得积分10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836