Machine learning aided design of conformal cooling channels for injection molding

造型(装饰) 计算机科学 机械工程 注塑机
作者
Zhenyang Gao,Guoying Dong,Yunlong Tang,Yaoyao Fiona Zhao
出处
期刊:Journal of Intelligent Manufacturing [Springer Science+Business Media]
卷期号:: 1-19 被引量:1
标识
DOI:10.1007/s10845-021-01841-9
摘要

During the injection molding process, the cooling process represents the largest portion of the cycle time. The effectiveness of the cooling system significantly affects the production efficiency and part quality, where it is limited by the conventional cooling channels manufactured by the drilling and casting process. Although the maturing advanced additive manufacturing (AM) technology allows the design and fabrication of complex conformal cooling channels, the temperature variance caused by non-uniform thickness distribution of the part remains unsolved. This issue is caused by the fact that the existing conformal cooling designs do not create the channels conformal to the part thickness distributions. In this work, a machine learning aided design method is proposed to generate cooling systems which conform not only to the part surface but also to the part thickness values. Three commonly used conformal cooling channel topologies including spiral, zig-zag, and porous are selected. A surrogate model is derived for each cooling channel topology to approximate the relationship between the design parameters of the cooling channels, part thickness, and the resulting part surface temperature. Based on the surrogate model, the design parameters of each type of cooling channels are optimized to minimize the part surface temperature variation. At the end of the paper, design cases are studied to validate the effectiveness of the proposed method. Based on the proposed method, much lower temperature variance and a smaller coolant pressure drop are achieved compared with the conventional conformal cooling design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助wizard采纳,获得10
刚刚
2秒前
丘比特应助@@@采纳,获得10
5秒前
zhouyunan完成签到,获得积分10
6秒前
8秒前
kf033完成签到,获得积分10
9秒前
Akim应助周萌采纳,获得10
11秒前
李健应助科研通管家采纳,获得30
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
SYLH应助科研通管家采纳,获得15
12秒前
15秒前
LIU完成签到,获得积分10
17秒前
洪焕良发布了新的文献求助10
18秒前
科研通AI5应助典雅的俊驰采纳,获得10
18秒前
mdmdd发布了新的文献求助10
20秒前
如意的听云完成签到,获得积分10
20秒前
@@@发布了新的文献求助10
22秒前
Tim完成签到,获得积分10
23秒前
mdmdd完成签到,获得积分10
27秒前
28秒前
28秒前
29秒前
29秒前
qing完成签到,获得积分10
29秒前
洪焕良完成签到,获得积分10
32秒前
Zxc发布了新的文献求助10
32秒前
沉静胜完成签到,获得积分10
34秒前
Gengli发布了新的文献求助30
34秒前
开庆完成签到,获得积分10
35秒前
35秒前
愉快凡旋发布了新的文献求助10
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997537
求助须知:如何正确求助?哪些是违规求助? 3537062
关于积分的说明 11270787
捐赠科研通 3276299
什么是DOI,文献DOI怎么找? 1806863
邀请新用户注册赠送积分活动 883554
科研通“疑难数据库(出版商)”最低求助积分说明 809975