Machine learning aided design of conformal cooling channels for injection molding

造型(装饰) 计算机科学 机械工程 注塑机
作者
Zhenyang Gao,Guoying Dong,Yunlong Tang,Yaoyao Fiona Zhao
出处
期刊:Journal of Intelligent Manufacturing [Springer Nature]
卷期号:: 1-19 被引量:1
标识
DOI:10.1007/s10845-021-01841-9
摘要

During the injection molding process, the cooling process represents the largest portion of the cycle time. The effectiveness of the cooling system significantly affects the production efficiency and part quality, where it is limited by the conventional cooling channels manufactured by the drilling and casting process. Although the maturing advanced additive manufacturing (AM) technology allows the design and fabrication of complex conformal cooling channels, the temperature variance caused by non-uniform thickness distribution of the part remains unsolved. This issue is caused by the fact that the existing conformal cooling designs do not create the channels conformal to the part thickness distributions. In this work, a machine learning aided design method is proposed to generate cooling systems which conform not only to the part surface but also to the part thickness values. Three commonly used conformal cooling channel topologies including spiral, zig-zag, and porous are selected. A surrogate model is derived for each cooling channel topology to approximate the relationship between the design parameters of the cooling channels, part thickness, and the resulting part surface temperature. Based on the surrogate model, the design parameters of each type of cooling channels are optimized to minimize the part surface temperature variation. At the end of the paper, design cases are studied to validate the effectiveness of the proposed method. Based on the proposed method, much lower temperature variance and a smaller coolant pressure drop are achieved compared with the conventional conformal cooling design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助淡然的蓝天采纳,获得30
1秒前
李健应助胡萝卜采纳,获得10
2秒前
yuna_yqc发布了新的文献求助30
3秒前
Nope完成签到,获得积分10
4秒前
4秒前
小强呐完成签到 ,获得积分10
4秒前
大方的凝梦完成签到,获得积分10
5秒前
6秒前
haha完成签到 ,获得积分10
7秒前
小马甲应助璿_采纳,获得30
8秒前
Ming完成签到,获得积分10
8秒前
bkagyin应助可靠的寒风采纳,获得10
10秒前
可爱的函函应助HYYY采纳,获得30
11秒前
yuna_yqc完成签到,获得积分10
11秒前
和谐的如柏完成签到,获得积分10
11秒前
11秒前
12秒前
yuy完成签到,获得积分20
16秒前
刘刘发布了新的文献求助10
17秒前
雪白小丸子完成签到,获得积分10
19秒前
pplynl应助Bminor采纳,获得200
20秒前
打打应助crimson采纳,获得10
20秒前
酷波er应助change采纳,获得10
21秒前
21秒前
23秒前
23秒前
可怜小爬虫完成签到 ,获得积分10
23秒前
脑洞疼应助刘正阳采纳,获得10
24秒前
星辰大海应助15987342672采纳,获得10
24秒前
HYYY发布了新的文献求助30
27秒前
Glassy完成签到,获得积分10
27秒前
伶俐雅山发布了新的文献求助10
28秒前
30秒前
孔刚发布了新的文献求助10
35秒前
36秒前
37秒前
上官若男应助xu采纳,获得10
37秒前
38秒前
38秒前
于天一发布了新的文献求助30
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373872
求助须知:如何正确求助?哪些是违规求助? 4499905
关于积分的说明 14007520
捐赠科研通 4406884
什么是DOI,文献DOI怎么找? 2420755
邀请新用户注册赠送积分活动 1413471
关于科研通互助平台的介绍 1390076