Dictionary Learning With Low-Rank Coding Coefficients for Tensor Completion

编码(社会科学) 计算机科学 张量(固有定义) 人工智能 算法 缩小 模式识别(心理学) 理论计算机科学 机器学习 数学 统计 程序设计语言 纯数学
作者
Tai-Xiang Jiang,Xi-Le Zhao,Hao Zhang,Michael K. Ng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 932-946 被引量:16
标识
DOI:10.1109/tnnls.2021.3104837
摘要

In this article, we propose a novel tensor learning and coding model for third-order data completion. The aim of our model is to learn a data-adaptive dictionary from given observations and determine the coding coefficients of third-order tensor tubes. In the completion process, we minimize the low-rankness of each tensor slice containing the coding coefficients. By comparison with the traditional predefined transform basis, the advantages of the proposed model are that: 1) the dictionary can be learned based on the given data observations so that the basis can be more adaptively and accurately constructed and 2) the low-rankness of the coding coefficients can allow the linear combination of dictionary features more effectively. Also we develop a multiblock proximal alternating minimization algorithm for solving such tensor learning and coding model and show that the sequence generated by the algorithm can globally converge to a critical point. Extensive experimental results for real datasets such as videos, hyperspectral images, and traffic data are reported to demonstrate these advantages and show that the performance of the proposed tensor learning and coding method is significantly better than the other tensor completion methods in terms of several evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助淡然的筝采纳,获得10
刚刚
1秒前
赵辉发布了新的文献求助10
1秒前
1秒前
缓冲中发布了新的文献求助10
1秒前
2秒前
hhh发布了新的文献求助10
2秒前
sunny_biosy完成签到,获得积分10
2秒前
3秒前
李健应助西瓜炖火锅采纳,获得10
4秒前
小明应助JIAYIWANG采纳,获得10
4秒前
娜娜发布了新的文献求助10
4秒前
4秒前
天天向上完成签到 ,获得积分10
4秒前
胡萝卜发布了新的文献求助10
6秒前
思源应助yiyiyi采纳,获得10
6秒前
张恒发布了新的文献求助10
6秒前
7秒前
Smiling发布了新的文献求助10
8秒前
suiyi完成签到,获得积分10
8秒前
悄悄发布了新的文献求助10
8秒前
03发布了新的文献求助10
9秒前
9秒前
所所应助Marcus采纳,获得10
10秒前
情怀应助YY采纳,获得10
10秒前
10秒前
艺馨发布了新的文献求助10
11秒前
GCS12发布了新的文献求助10
11秒前
牛子莼完成签到,获得积分10
11秒前
小马甲应助dyp采纳,获得10
12秒前
汉堡包应助英俊的尔曼采纳,获得10
12秒前
12秒前
hh发布了新的文献求助10
12秒前
Ava应助娜娜采纳,获得10
12秒前
CipherSage应助妮妮采纳,获得30
12秒前
huahua完成签到,获得积分20
12秒前
不才完成签到,获得积分10
13秒前
hhh完成签到,获得积分10
13秒前
13秒前
隐形曼青应助寻找采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559942
求助须知:如何正确求助?哪些是违规求助? 3986277
关于积分的说明 12342143
捐赠科研通 3656944
什么是DOI,文献DOI怎么找? 2014643
邀请新用户注册赠送积分活动 1049418
科研通“疑难数据库(出版商)”最低求助积分说明 937738