Dictionary Learning With Low-Rank Coding Coefficients for Tensor Completion

编码(社会科学) 计算机科学 张量(固有定义) 人工智能 算法 缩小 模式识别(心理学) 理论计算机科学 机器学习 数学 统计 程序设计语言 纯数学
作者
Tai-Xiang Jiang,Xi-Le Zhao,Hao Zhang,Michael K. Ng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 932-946 被引量:16
标识
DOI:10.1109/tnnls.2021.3104837
摘要

In this article, we propose a novel tensor learning and coding model for third-order data completion. The aim of our model is to learn a data-adaptive dictionary from given observations and determine the coding coefficients of third-order tensor tubes. In the completion process, we minimize the low-rankness of each tensor slice containing the coding coefficients. By comparison with the traditional predefined transform basis, the advantages of the proposed model are that: 1) the dictionary can be learned based on the given data observations so that the basis can be more adaptively and accurately constructed and 2) the low-rankness of the coding coefficients can allow the linear combination of dictionary features more effectively. Also we develop a multiblock proximal alternating minimization algorithm for solving such tensor learning and coding model and show that the sequence generated by the algorithm can globally converge to a critical point. Extensive experimental results for real datasets such as videos, hyperspectral images, and traffic data are reported to demonstrate these advantages and show that the performance of the proposed tensor learning and coding method is significantly better than the other tensor completion methods in terms of several evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
src发布了新的文献求助10
刚刚
打打应助yyy采纳,获得10
2秒前
所所应助噗噜噜采纳,获得30
2秒前
3秒前
自然剑完成签到,获得积分10
4秒前
4秒前
小超人完成签到 ,获得积分10
5秒前
fr完成签到,获得积分10
6秒前
爆米花应助SHD采纳,获得10
6秒前
CodeCraft应助无趣采纳,获得10
6秒前
自然剑发布了新的文献求助10
6秒前
思源应助DawudShan采纳,获得10
7秒前
脑洞疼应助陈晨采纳,获得10
7秒前
tiantian发布了新的文献求助10
9秒前
慕青应助123采纳,获得10
10秒前
桐桐应助聆听采纳,获得10
11秒前
嚯嚯完成签到,获得积分10
12秒前
yue完成签到,获得积分10
12秒前
applelpypies完成签到 ,获得积分0
12秒前
量子星尘发布了新的文献求助10
13秒前
眼睛大雨筠应助lewis17采纳,获得30
14秒前
14秒前
15秒前
搬砖的发布了新的文献求助10
15秒前
NexusExplorer应助疯狂的半山采纳,获得10
19秒前
SHD发布了新的文献求助10
20秒前
乐观的大叔完成签到 ,获得积分10
20秒前
哈哈哈哈发布了新的文献求助10
21秒前
buqi应助yyy采纳,获得10
22秒前
23秒前
BUCI发布了新的文献求助10
24秒前
25秒前
汉堡包应助科研通管家采纳,获得10
27秒前
李爱国应助科研通管家采纳,获得10
27秒前
开心浩阑应助科研通管家采纳,获得20
27秒前
开心浩阑应助科研通管家采纳,获得20
27秒前
Luke完成签到,获得积分10
29秒前
30秒前
lxlcx应助核桃采纳,获得50
30秒前
丘比特应助核桃采纳,获得10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958021
求助须知:如何正确求助?哪些是违规求助? 3504166
关于积分的说明 11117289
捐赠科研通 3235515
什么是DOI,文献DOI怎么找? 1788289
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511