Dictionary Learning With Low-Rank Coding Coefficients for Tensor Completion

编码(社会科学) 计算机科学 张量(固有定义) 人工智能 算法 缩小 模式识别(心理学) 理论计算机科学 机器学习 数学 统计 程序设计语言 纯数学
作者
Tai-Xiang Jiang,Xi-Le Zhao,Hao Zhang,Michael K. Ng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 932-946 被引量:16
标识
DOI:10.1109/tnnls.2021.3104837
摘要

In this article, we propose a novel tensor learning and coding model for third-order data completion. The aim of our model is to learn a data-adaptive dictionary from given observations and determine the coding coefficients of third-order tensor tubes. In the completion process, we minimize the low-rankness of each tensor slice containing the coding coefficients. By comparison with the traditional predefined transform basis, the advantages of the proposed model are that: 1) the dictionary can be learned based on the given data observations so that the basis can be more adaptively and accurately constructed and 2) the low-rankness of the coding coefficients can allow the linear combination of dictionary features more effectively. Also we develop a multiblock proximal alternating minimization algorithm for solving such tensor learning and coding model and show that the sequence generated by the algorithm can globally converge to a critical point. Extensive experimental results for real datasets such as videos, hyperspectral images, and traffic data are reported to demonstrate these advantages and show that the performance of the proposed tensor learning and coding method is significantly better than the other tensor completion methods in terms of several evaluation metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc完成签到 ,获得积分10
刚刚
Lucky完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
ZYQ发布了新的文献求助10
2秒前
大个应助典雅海蓝采纳,获得10
3秒前
铁力木发布了新的文献求助10
3秒前
3秒前
dlgd完成签到,获得积分10
3秒前
smile发布了新的文献求助10
4秒前
4秒前
4秒前
Havertz发布了新的文献求助10
4秒前
4秒前
堪雅寒完成签到,获得积分10
5秒前
ningning完成签到,获得积分10
6秒前
6秒前
sophia完成签到,获得积分10
6秒前
7秒前
Akim应助从清晨到日暮采纳,获得10
7秒前
tangyuan发布了新的文献求助30
7秒前
CJY完成签到,获得积分10
8秒前
xixi发布了新的文献求助10
8秒前
扬帆远航完成签到,获得积分10
8秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
李爱国应助weed6采纳,获得10
12秒前
12秒前
脑洞疼应助chess采纳,获得10
13秒前
高贵火儿完成签到 ,获得积分10
13秒前
13秒前
hahaha完成签到,获得积分10
13秒前
jing发布了新的文献求助10
13秒前
糖卜里卜完成签到,获得积分10
14秒前
所所应助踏雾采纳,获得10
14秒前
ZYQ完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667199
求助须知:如何正确求助?哪些是违规求助? 4884533
关于积分的说明 15119115
捐赠科研通 4826074
什么是DOI,文献DOI怎么找? 2583722
邀请新用户注册赠送积分活动 1537874
关于科研通互助平台的介绍 1496008