Secure User Authentication Leveraging Keystroke Dynamics via Wi-Fi Sensing

计算机科学 击键动态学 欺骗攻击 认证(法律) 卷积神经网络 鉴定(生物学) 多因素身份验证 击键记录 利用 计算机安全 人工智能 人机交互 身份验证协议 密码 S/键 生物 植物
作者
Yu Gu,Yantong Wang,Meng Wang,Zulie Pan,Zhihao Hu,Zhi Liu,Fan Shi,Mianxiong Dong
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (4): 2784-2795 被引量:7
标识
DOI:10.1109/tii.2021.3108850
摘要

User authentication plays a critical role in access control of a man-machine system, where the knowledge factor, such as a personal identification number, constitutes the most widely used authentication element. However, knowledge factors are usually vulnerable to the spoofing attack. Recently, the inheritance factor, such as fingerprints, emerges as an efficient alternative resilient to malicious users, but it normally requires special equipment. To this end, in this article, we propose WiPass, a device-free authentication system only leveraging the pervasive Wi-Fi infrastructure to explore keystroke dynamics (manner and rhythm of keystrokes) captured by the channel state information to recognize legitimate users while rejecting spoofers. However, it remains an open challenge to characterize the behavioral features hidden in the human subtle motions, such as keystrokes. Therefore, we build a signal enhancement model using Ricean distribution to amplify user keystroke dynamics and a hybrid learning model for user authentication, which consists of two parts, i.e., convolutional neural network based feature extraction and support vector machine based classification. The former relies on visualizing the channel responses into time-series images to learn the behavioral features of keystrokes in energy and spectrum domains, whereas the latter exploits such behavioral features for user authentication. We prototype WiPass on the low-cost off-the-shelf Wi-Fi devices and verify its performance. Empirical results show that WiPass achieves on average 92.1% authentication accuracy, 5.9% false accept rate, and 6.3% false reject rate in three real environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高伟杰完成签到,获得积分10
1秒前
果粒儿完成签到 ,获得积分10
2秒前
局外人发布了新的文献求助30
2秒前
乐乐乐乐乐乐应助滴滴滴采纳,获得10
3秒前
fvnsj完成签到,获得积分10
3秒前
Onism应助lyf采纳,获得10
4秒前
乐乐乐乐乐乐应助咕噜噜采纳,获得10
4秒前
瓷穹完成签到,获得积分10
4秒前
小新完成签到,获得积分10
4秒前
1234567890发布了新的文献求助10
4秒前
合适的毛豆完成签到,获得积分10
4秒前
Tal完成签到,获得积分10
7秒前
9秒前
喜悦的月光完成签到,获得积分10
11秒前
眰恦完成签到,获得积分10
11秒前
相爱就永远在一起完成签到,获得积分10
13秒前
13秒前
14秒前
局外人完成签到,获得积分10
16秒前
16秒前
小怪兽完成签到,获得积分10
17秒前
gaozzzz完成签到,获得积分10
18秒前
科研_小白完成签到,获得积分10
19秒前
19秒前
科研天才完成签到,获得积分10
22秒前
CD-toy完成签到 ,获得积分10
22秒前
23秒前
cynthiaLLL完成签到 ,获得积分10
24秒前
想多睡会儿完成签到,获得积分10
25秒前
25秒前
眯眯眼的仇天完成签到 ,获得积分10
26秒前
47完成签到,获得积分10
27秒前
JasVe完成签到 ,获得积分10
28秒前
Akim应助海绵宝宝采纳,获得10
28秒前
30秒前
123完成签到 ,获得积分10
30秒前
Hy完成签到,获得积分10
32秒前
李健应助壹零采纳,获得10
33秒前
33秒前
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3317112
求助须知:如何正确求助?哪些是违规求助? 2948816
关于积分的说明 8542825
捐赠科研通 2624909
什么是DOI,文献DOI怎么找? 1436439
科研通“疑难数据库(出版商)”最低求助积分说明 665902
邀请新用户注册赠送积分活动 651840