Secure User Authentication Leveraging Keystroke Dynamics via Wi-Fi Sensing

计算机科学 击键动态学 欺骗攻击 认证(法律) 卷积神经网络 鉴定(生物学) 多因素身份验证 击键记录 利用 计算机安全 人工智能 人机交互 身份验证协议 密码 S/键 生物 植物
作者
Yu Gu,Yantong Wang,Meng Wang,Zulie Pan,Zhihao Hu,Zhi Liu,Fan Shi,Mianxiong Dong
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (4): 2784-2795 被引量:17
标识
DOI:10.1109/tii.2021.3108850
摘要

User authentication plays a critical role in access control of a man-machine system, where the knowledge factor, such as a personal identification number, constitutes the most widely used authentication element. However, knowledge factors are usually vulnerable to the spoofing attack. Recently, the inheritance factor, such as fingerprints, emerges as an efficient alternative resilient to malicious users, but it normally requires special equipment. To this end, in this article, we propose WiPass, a device-free authentication system only leveraging the pervasive Wi-Fi infrastructure to explore keystroke dynamics (manner and rhythm of keystrokes) captured by the channel state information to recognize legitimate users while rejecting spoofers. However, it remains an open challenge to characterize the behavioral features hidden in the human subtle motions, such as keystrokes. Therefore, we build a signal enhancement model using Ricean distribution to amplify user keystroke dynamics and a hybrid learning model for user authentication, which consists of two parts, i.e., convolutional neural network based feature extraction and support vector machine based classification. The former relies on visualizing the channel responses into time-series images to learn the behavioral features of keystrokes in energy and spectrum domains, whereas the latter exploits such behavioral features for user authentication. We prototype WiPass on the low-cost off-the-shelf Wi-Fi devices and verify its performance. Empirical results show that WiPass achieves on average 92.1% authentication accuracy, 5.9% false accept rate, and 6.3% false reject rate in three real environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
捏捏捏发布了新的文献求助10
1秒前
1秒前
qiuwuji发布了新的文献求助10
1秒前
ming完成签到,获得积分10
1秒前
跳跃凡完成签到,获得积分20
2秒前
2秒前
2秒前
自由的冰夏完成签到,获得积分10
3秒前
3秒前
3秒前
2224536发布了新的文献求助10
4秒前
超级水壶发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助悦耳醉香采纳,获得10
4秒前
深情的芝麻完成签到,获得积分10
5秒前
风趣以云完成签到,获得积分10
5秒前
cza发布了新的文献求助10
5秒前
老杨发布了新的文献求助10
5秒前
娟娟加油发布了新的文献求助10
5秒前
6秒前
taipingyang完成签到,获得积分10
6秒前
Tanyang完成签到 ,获得积分10
6秒前
64473791发布了新的文献求助10
6秒前
6秒前
Annnn发布了新的文献求助10
6秒前
7秒前
董浩楠发布了新的文献求助10
7秒前
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得80
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
彭于彦祖应助科研通管家采纳,获得30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688