Secure User Authentication Leveraging Keystroke Dynamics via Wi-Fi Sensing

计算机科学 击键动态学 欺骗攻击 认证(法律) 卷积神经网络 鉴定(生物学) 多因素身份验证 击键记录 利用 计算机安全 人工智能 人机交互 身份验证协议 密码 S/键 生物 植物
作者
Yu Gu,Yantong Wang,Meng Wang,Zulie Pan,Zhihao Hu,Zhi Liu,Fan Shi,Mianxiong Dong
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (4): 2784-2795 被引量:17
标识
DOI:10.1109/tii.2021.3108850
摘要

User authentication plays a critical role in access control of a man-machine system, where the knowledge factor, such as a personal identification number, constitutes the most widely used authentication element. However, knowledge factors are usually vulnerable to the spoofing attack. Recently, the inheritance factor, such as fingerprints, emerges as an efficient alternative resilient to malicious users, but it normally requires special equipment. To this end, in this article, we propose WiPass, a device-free authentication system only leveraging the pervasive Wi-Fi infrastructure to explore keystroke dynamics (manner and rhythm of keystrokes) captured by the channel state information to recognize legitimate users while rejecting spoofers. However, it remains an open challenge to characterize the behavioral features hidden in the human subtle motions, such as keystrokes. Therefore, we build a signal enhancement model using Ricean distribution to amplify user keystroke dynamics and a hybrid learning model for user authentication, which consists of two parts, i.e., convolutional neural network based feature extraction and support vector machine based classification. The former relies on visualizing the channel responses into time-series images to learn the behavioral features of keystrokes in energy and spectrum domains, whereas the latter exploits such behavioral features for user authentication. We prototype WiPass on the low-cost off-the-shelf Wi-Fi devices and verify its performance. Empirical results show that WiPass achieves on average 92.1% authentication accuracy, 5.9% false accept rate, and 6.3% false reject rate in three real environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夏铖铄发布了新的文献求助10
刚刚
1秒前
研友_ngkyGn应助激情的歌曲采纳,获得20
2秒前
852应助什么什么哇偶采纳,获得10
2秒前
2秒前
张金金完成签到,获得积分10
2秒前
邢大宝发布了新的文献求助10
3秒前
3秒前
李爱国应助hms采纳,获得10
3秒前
4秒前
huzhu123发布了新的文献求助10
4秒前
4秒前
樱花祭发布了新的文献求助10
4秒前
酷波er应助学海行舟采纳,获得10
4秒前
科研通AI2S应助ira采纳,获得10
5秒前
一二发布了新的文献求助10
5秒前
Chao123_完成签到,获得积分10
5秒前
5秒前
6秒前
Anovel发布了新的文献求助10
6秒前
Scherbatsky完成签到,获得积分10
6秒前
麦乐迪完成签到 ,获得积分10
7秒前
7秒前
烦人应助linmo采纳,获得10
8秒前
8秒前
8秒前
3MB完成签到 ,获得积分10
8秒前
9秒前
10秒前
10秒前
芹菜发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
二二春发布了新的文献求助10
12秒前
12秒前
css发布了新的文献求助10
12秒前
整齐谷芹完成签到 ,获得积分10
12秒前
慕青应助rio采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501093
关于积分的说明 11101851
捐赠科研通 3231470
什么是DOI,文献DOI怎么找? 1786438
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798