Secure User Authentication Leveraging Keystroke Dynamics via Wi-Fi Sensing

计算机科学 击键动态学 欺骗攻击 认证(法律) 卷积神经网络 鉴定(生物学) 多因素身份验证 击键记录 利用 计算机安全 人工智能 人机交互 身份验证协议 密码 S/键 生物 植物
作者
Yu Gu,Yantong Wang,Meng Wang,Zulie Pan,Zhihao Hu,Zhi Liu,Fan Shi,Mianxiong Dong
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (4): 2784-2795 被引量:17
标识
DOI:10.1109/tii.2021.3108850
摘要

User authentication plays a critical role in access control of a man-machine system, where the knowledge factor, such as a personal identification number, constitutes the most widely used authentication element. However, knowledge factors are usually vulnerable to the spoofing attack. Recently, the inheritance factor, such as fingerprints, emerges as an efficient alternative resilient to malicious users, but it normally requires special equipment. To this end, in this article, we propose WiPass, a device-free authentication system only leveraging the pervasive Wi-Fi infrastructure to explore keystroke dynamics (manner and rhythm of keystrokes) captured by the channel state information to recognize legitimate users while rejecting spoofers. However, it remains an open challenge to characterize the behavioral features hidden in the human subtle motions, such as keystrokes. Therefore, we build a signal enhancement model using Ricean distribution to amplify user keystroke dynamics and a hybrid learning model for user authentication, which consists of two parts, i.e., convolutional neural network based feature extraction and support vector machine based classification. The former relies on visualizing the channel responses into time-series images to learn the behavioral features of keystrokes in energy and spectrum domains, whereas the latter exploits such behavioral features for user authentication. We prototype WiPass on the low-cost off-the-shelf Wi-Fi devices and verify its performance. Empirical results show that WiPass achieves on average 92.1% authentication accuracy, 5.9% false accept rate, and 6.3% false reject rate in three real environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maomao完成签到,获得积分10
刚刚
我是笨蛋完成签到 ,获得积分10
2秒前
酷波er应助caoyy采纳,获得10
3秒前
3秒前
Dreamsli发布了新的文献求助10
4秒前
有只小狗完成签到,获得积分10
5秒前
飞飞完成签到,获得积分10
6秒前
豆dou发布了新的文献求助10
6秒前
Mannone完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
13679165979完成签到,获得积分10
7秒前
Jocelyn7关注了科研通微信公众号
8秒前
Jzhang应助赵小可可可可采纳,获得10
8秒前
wls完成签到 ,获得积分10
9秒前
CC完成签到,获得积分10
9秒前
10秒前
鬼才之眼完成签到 ,获得积分10
10秒前
xfxx发布了新的文献求助10
11秒前
章家炜完成签到,获得积分20
11秒前
11秒前
茶博士发布了新的文献求助10
11秒前
专通下水道完成签到 ,获得积分10
16秒前
16秒前
16秒前
nenoaowu发布了新的文献求助30
16秒前
小马甲应助章家炜采纳,获得10
18秒前
赵李艺完成签到 ,获得积分10
18秒前
完美世界应助高大黄蜂采纳,获得10
19秒前
20秒前
20秒前
20秒前
zhangzhen发布了新的文献求助10
21秒前
马桶盖盖子完成签到 ,获得积分10
21秒前
22秒前
学术小白完成签到,获得积分10
22秒前
22秒前
郭豪琪发布了新的文献求助10
23秒前
认真丹亦完成签到 ,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824