Agile Support Vector Machine for Energy-efficient Resource Allocation in IoT-oriented Cloud using PSO

计算机科学 负载平衡(电力) 云计算 供应 虚拟机 粒子群优化 分布式计算 元启发式 资源配置 支持向量机 机器学习 人工智能 计算机网络 操作系统 数学 几何学 网格
作者
Muhammad Junaid,Adnan Sohail,Fadi Al‐Turjman,Rashid Ali
出处
期刊:ACM Transactions on Internet Technology [Association for Computing Machinery]
卷期号:22 (1): 1-35 被引量:4
标识
DOI:10.1145/3433541
摘要

Over the years cloud computing has seen significant evolution in terms of improvement in infrastructure and resource provisioning. However the continuous emergence of new applications such as the Internet of Things (IoTs) with thousands of users put a significant load on cloud infrastructure. Load balancing of resource allocation in cloud-oriented IoT is a critical factor that has a significant impact on the smooth operation of cloud services and customer satisfaction. Several load balancing strategies for cloud environment have been proposed in the past. However the existing approaches mostly consider only a few parameters and ignore many critical factors having a pivotal role in load balancing leading to less optimized resource allocation. Load balancing is a challenging problem and therefore the research community has recently focused towards employing machine learning-based metaheuristic approaches for load balancing in the cloud. In this paper we propose a metaheuristics-based scheme Data Format Classification using Support Vector Machine (DFC-SVM), to deal with the load balancing problem. The proposed scheme aims to reduce the online load balancing complexity by offline-based pre-classification of raw-data from diverse sources (such as IoT) into different formats e.g. text images media etc. SVM is utilized to classify “n” types of data formats featuring audio video text digital images and maps etc. A one-to-many classification approach has been developed so that data formats from the cloud are initially classified into their respective classes and assigned to virtual machines through the proposed modified version of Particle Swarm Optimization (PSO) which schedules the data of a particular class efficiently. The experimental results compared with the baselines have shown a significant improvement in the performance of the proposed approach. Overall an average of 94% classification accuracy is achieved along with 11.82% less energy 16% less response time and 16.08% fewer SLA violations are observed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WenzongLai发布了新的文献求助10
2秒前
小王发布了新的文献求助10
2秒前
CipherSage应助最烦起名称采纳,获得10
3秒前
3秒前
3秒前
3秒前
繁荣的谷蓝完成签到 ,获得积分10
4秒前
一次过发布了新的文献求助10
7秒前
多开心奶粉完成签到,获得积分10
7秒前
汉堡包应助yuan采纳,获得10
7秒前
希望天下0贩的0应助一一采纳,获得10
7秒前
7秒前
wangfang发布了新的文献求助80
8秒前
8秒前
隐形曼青应助鱼饼采纳,获得10
9秒前
嗯哼应助淡然的宛秋采纳,获得20
12秒前
qiqi完成签到 ,获得积分10
13秒前
今后应助小白采纳,获得10
15秒前
不配.应助Leeny采纳,获得10
15秒前
18秒前
19秒前
俏皮的雁桃完成签到,获得积分10
19秒前
不配.应助吴效采纳,获得20
20秒前
小王完成签到,获得积分20
20秒前
Joey完成签到,获得积分10
21秒前
Daemon完成签到 ,获得积分10
24秒前
25秒前
劳模完成签到,获得积分10
25秒前
华仔应助冉柒采纳,获得10
25秒前
25秒前
DD发布了新的文献求助10
27秒前
科研通AI2S应助鱼饼采纳,获得10
27秒前
28秒前
congconglyu完成签到,获得积分10
28秒前
FashionBoy应助一次过采纳,获得10
29秒前
Ava应助橙子采纳,获得10
30秒前
曦沐发布了新的文献求助20
31秒前
科研通AI2S应助llllwwww采纳,获得10
31秒前
31秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124684
求助须知:如何正确求助?哪些是违规求助? 2775048
关于积分的说明 7725009
捐赠科研通 2430539
什么是DOI,文献DOI怎么找? 1291201
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323