Agile Support Vector Machine for Energy-efficient Resource Allocation in IoT-oriented Cloud using PSO

计算机科学 负载平衡(电力) 云计算 供应 虚拟机 粒子群优化 分布式计算 元启发式 资源配置 支持向量机 机器学习 人工智能 计算机网络 操作系统 数学 几何学 网格
作者
Muhammad Junaid,Adnan Sohail,Fadi Al‐Turjman,Rashid Ali
出处
期刊:ACM Transactions on Internet Technology [Association for Computing Machinery]
卷期号:22 (1): 1-35 被引量:4
标识
DOI:10.1145/3433541
摘要

Over the years cloud computing has seen significant evolution in terms of improvement in infrastructure and resource provisioning. However the continuous emergence of new applications such as the Internet of Things (IoTs) with thousands of users put a significant load on cloud infrastructure. Load balancing of resource allocation in cloud-oriented IoT is a critical factor that has a significant impact on the smooth operation of cloud services and customer satisfaction. Several load balancing strategies for cloud environment have been proposed in the past. However the existing approaches mostly consider only a few parameters and ignore many critical factors having a pivotal role in load balancing leading to less optimized resource allocation. Load balancing is a challenging problem and therefore the research community has recently focused towards employing machine learning-based metaheuristic approaches for load balancing in the cloud. In this paper we propose a metaheuristics-based scheme Data Format Classification using Support Vector Machine (DFC-SVM), to deal with the load balancing problem. The proposed scheme aims to reduce the online load balancing complexity by offline-based pre-classification of raw-data from diverse sources (such as IoT) into different formats e.g. text images media etc. SVM is utilized to classify “n” types of data formats featuring audio video text digital images and maps etc. A one-to-many classification approach has been developed so that data formats from the cloud are initially classified into their respective classes and assigned to virtual machines through the proposed modified version of Particle Swarm Optimization (PSO) which schedules the data of a particular class efficiently. The experimental results compared with the baselines have shown a significant improvement in the performance of the proposed approach. Overall an average of 94% classification accuracy is achieved along with 11.82% less energy 16% less response time and 16.08% fewer SLA violations are observed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
3秒前
胡丹妮发布了新的文献求助10
3秒前
RLV发布了新的文献求助10
3秒前
niuyaka关注了科研通微信公众号
3秒前
量子星尘发布了新的文献求助30
4秒前
4秒前
苹果大侠发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
东京今夜下雪完成签到 ,获得积分10
6秒前
狗狗明明发布了新的文献求助10
6秒前
下次见发布了新的文献求助10
6秒前
7秒前
wljwljwlj完成签到,获得积分10
7秒前
taotao216发布了新的文献求助10
8秒前
麻烦先生。完成签到,获得积分10
8秒前
花開发布了新的文献求助10
9秒前
赘婿应助hh采纳,获得10
10秒前
小张真的困啦完成签到,获得积分10
10秒前
manjusaka发布了新的文献求助10
10秒前
楚子关发布了新的文献求助10
11秒前
Deng发布了新的文献求助10
12秒前
12秒前
monly应助小张真的困啦采纳,获得30
13秒前
13秒前
上善若水发布了新的文献求助10
13秒前
14秒前
15秒前
舒适平文完成签到 ,获得积分10
15秒前
田様应助开放的白玉采纳,获得10
17秒前
涛涛完成签到,获得积分10
17秒前
搜集达人应助风清扬采纳,获得10
17秒前
Youlu发布了新的文献求助10
18秒前
19秒前
Tong发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720392
求助须知:如何正确求助?哪些是违规求助? 5259964
关于积分的说明 15291027
捐赠科研通 4869813
什么是DOI,文献DOI怎么找? 2615036
邀请新用户注册赠送积分活动 1565022
关于科研通互助平台的介绍 1522160