Agile Support Vector Machine for Energy-efficient Resource Allocation in IoT-oriented Cloud using PSO

计算机科学 负载平衡(电力) 云计算 供应 虚拟机 粒子群优化 分布式计算 元启发式 资源配置 支持向量机 机器学习 人工智能 计算机网络 操作系统 几何学 数学 网格
作者
Muhammad Junaid,Adnan Sohail,Fadi Al‐Turjman,Rashid Ali
出处
期刊:ACM Transactions on Internet Technology [Association for Computing Machinery]
卷期号:22 (1): 1-35 被引量:4
标识
DOI:10.1145/3433541
摘要

Over the years cloud computing has seen significant evolution in terms of improvement in infrastructure and resource provisioning. However the continuous emergence of new applications such as the Internet of Things (IoTs) with thousands of users put a significant load on cloud infrastructure. Load balancing of resource allocation in cloud-oriented IoT is a critical factor that has a significant impact on the smooth operation of cloud services and customer satisfaction. Several load balancing strategies for cloud environment have been proposed in the past. However the existing approaches mostly consider only a few parameters and ignore many critical factors having a pivotal role in load balancing leading to less optimized resource allocation. Load balancing is a challenging problem and therefore the research community has recently focused towards employing machine learning-based metaheuristic approaches for load balancing in the cloud. In this paper we propose a metaheuristics-based scheme Data Format Classification using Support Vector Machine (DFC-SVM), to deal with the load balancing problem. The proposed scheme aims to reduce the online load balancing complexity by offline-based pre-classification of raw-data from diverse sources (such as IoT) into different formats e.g. text images media etc. SVM is utilized to classify “n” types of data formats featuring audio video text digital images and maps etc. A one-to-many classification approach has been developed so that data formats from the cloud are initially classified into their respective classes and assigned to virtual machines through the proposed modified version of Particle Swarm Optimization (PSO) which schedules the data of a particular class efficiently. The experimental results compared with the baselines have shown a significant improvement in the performance of the proposed approach. Overall an average of 94% classification accuracy is achieved along with 11.82% less energy 16% less response time and 16.08% fewer SLA violations are observed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mzhmhy发布了新的文献求助10
3秒前
李健的粉丝团团长应助ASA采纳,获得30
4秒前
Choi完成签到,获得积分0
4秒前
无辜如容发布了新的文献求助10
4秒前
123完成签到,获得积分10
5秒前
6秒前
单耳兔完成签到 ,获得积分10
6秒前
潇湘雪月发布了新的文献求助10
6秒前
故意的靳完成签到,获得积分10
8秒前
mzhmhy完成签到,获得积分10
8秒前
bkagyin应助wish采纳,获得10
12秒前
Afaq发布了新的文献求助10
12秒前
果粒多发布了新的文献求助10
13秒前
13秒前
无辜如容完成签到,获得积分10
14秒前
14秒前
17秒前
18秒前
ASA发布了新的文献求助30
18秒前
19秒前
情怀应助tingting9采纳,获得10
20秒前
FXQ123_范发布了新的文献求助10
20秒前
sun完成签到,获得积分20
20秒前
22秒前
彭于晏应助wldsd采纳,获得30
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
23秒前
高一淼发布了新的文献求助10
24秒前
明道若昧完成签到,获得积分10
24秒前
上官若男应助mk采纳,获得10
25秒前
wish完成签到,获得积分10
27秒前
wish发布了新的文献求助10
29秒前
稍等一下完成签到 ,获得积分10
30秒前
momo发布了新的文献求助10
30秒前
32秒前
32秒前
liang白开完成签到,获得积分10
34秒前
mk发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136