Intravenous Nanomedicine for Targeted Delivery of Thrombin to Augment Hemostasis

止血 血小板 血管性血友病因子 血小板输注 医学 凝血酶 血小板活化 全血 药理学 化学 免疫学 内科学
作者
Anirban Sen Gupta,Aditya Girish,Ketan Jolly,María de la Fuente,Han Xu,Marvin T. Nieman,Arielle Recchione
出处
期刊:Blood [American Society of Hematology]
卷期号:138 (Supplement 1): 1029-1029 被引量:7
标识
DOI:10.1182/blood-2021-153708
摘要

Abstract Non-compressible uncontrolled hemorrhage remains a major cause of mortality from traumatic injuries. Additionally, patients with congenital, disease-associated or drug-induced hemostatic dysfunctions, may often be at risk of excessive bleeding. Therefore, treatments that render rapid hemostasis are clinically significant in potentially saving lives. The clinical gold standard for this is the transfusion of whole blood (WB) or blood components (e.g. controlled ratios of platelets, RBCs, and plasma), as evidenced by several clinical studies (e.g. PROPPR, PROMMTT and PAMPer). However, the availability of such blood products is donor-dependent, their shelf-life is limited due to contamination risks, and, their portability and storage is often challenging. While extensive research efforts are currently being focused on addressing these challenges, e.g. using low titer Group O whole blood, cold-storage and freeze-drying of platelets and plasma, in vitro generation of platelets from iPSCs etc., a parallel research focus has emerged in designing biomaterials-based I.V.-administrable technologies (nanoparticles, polymers etc.) that can provide specific functional attributes of hemostasis while allowing donor-independent manufacturing, scale-up, and on-demand availability. Prominent examples of these are 'synthetic platelet' (SynthoPlate) nanoparticles that recapitulate platelet's binding interactions with von Willebrand Factor (vWF), collagen and active platelet integrin GPIIb-IIIa, flexible platelet-like particles (PLP) that bind fibrin to recapitulate platelet's biomechanical properties, fibrinogen function-mimicking nanoparticles that amplify the aggregation of active platelets, peptide-modified synthetic polymers (e.g. PolySTAT, HAPPI etc.) that render clot stabilization etc. In this framework, we present the design and evaluation of I.V.-administrable unique platelet-inspired nanoparticles that render injury site-targeted, enzyme-responsive direct delivery of thrombin, to site-specifically augment fibrin generation for hemostasis. Our design is inspired by platelets' crucial hemostatic mechanisms of : (i) rapidly accumulating at the injury site to form a plug and (ii) serving as a coagulation amplifier via presenting anionic phospholipids on the activated platelet surface to render tenase and prothrombinase factor assemblies leading to thrombin (FIIa) burst, which can then site-specifically convert fibrinogen to fibrin. Thrombin delivery to augment hemostasis is clinically well-accepted, as exemplified by products like Tisseel where thrombin and fibrinogen are co-delivered by syringe directly at wound site. Researchers have also studied thrombin-loaded topical dressings and topical administration of thrombin-loaded particles on wounds to mitigate bleeding, but these cannot be used intravenously. A recent interesting study has explored encapsulation of thrombin-loaded nanoparticles inside actual platelets with the idea of the particles being released (analogous to granule secretion) upon platelet activation, but this was only demonstrated in vitro because optimizing this complex strategy for consistent in vivo function may be challenging. Our approach circumvents these challenges by: (i) loading consistent amount of thrombin in I.V.-administrable lipid nanoparticles (LNPs), (ii) directly targeting the thrombin-loaded LNPs (TLNPs) to the injury site via specific binding to vWF and collagen, and (iii) releasing the loaded thrombin via particle destabilization by the action of injury site-specific enzyme phospholipase A2 for in situ fibrin production. We evaluated the TLNPs in vitro in human blood and plasma where hemostatic defects were created by platelet depletion and anticoagulant treatment. Spectrophotometric studies of fibrin generation, rotational thromboelastometry (ROTEM) based studies of clot characteristics and BioFlux microfluidics based real-time imaging of fibrin generation under simulated vascular flow conditions, confirmed the ability of TLNPs to restore fibrin generation in hemostatic dysfunction settings. Subsequently, the in vivo feasibility of these TLNPs was tested in a mouse tail-clip bleeding model where a combination of platelet depletion plus anticoagulant treatment was used to render significant hemostatic defect. TLNPs were able to effectively reduce tail-bleeding in mice. Figure 1 Figure 1. Disclosures Sen Gupta: Haima Therapeutics: Other: Co-founder, Patents & Royalties: US 9107845, US 9107963.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jiaaaa完成签到,获得积分20
刚刚
刚刚
抱抱龙完成签到 ,获得积分10
2秒前
云墨完成签到 ,获得积分10
2秒前
3秒前
刘歌发布了新的文献求助10
3秒前
Stanley完成签到,获得积分20
4秒前
4秒前
YANICE发布了新的文献求助10
4秒前
4秒前
款款发布了新的文献求助10
5秒前
情怀应助emanon采纳,获得10
5秒前
吴筮完成签到,获得积分10
6秒前
7秒前
颿曦完成签到,获得积分10
7秒前
科研通AI2S应助ganhykk采纳,获得10
8秒前
端庄的如霜完成签到,获得积分10
8秒前
9秒前
qinqinwy发布了新的文献求助10
9秒前
刘歌完成签到,获得积分10
10秒前
輕語完成签到,获得积分10
11秒前
12秒前
英俊的铭应助Stanley采纳,获得10
13秒前
13秒前
JamesPei应助cxw采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
NexusExplorer应助Sakura采纳,获得10
16秒前
17秒前
Mryuan发布了新的文献求助10
18秒前
18秒前
SciGPT应助老干部采纳,获得10
18秒前
19秒前
星辰大海应助怡然梦竹采纳,获得10
19秒前
19秒前
龙江游侠完成签到,获得积分10
19秒前
21秒前
善学以致用应助李四采纳,获得10
21秒前
tao完成签到 ,获得积分10
23秒前
24秒前
25秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715