峰度
偏斜
数学
风险价值
单峰
参数统计
埃奇沃思系列
应用数学
系列(地层学)
分布(数学)
矩量法(概率论)
累积分布函数
计量经济学
概率密度函数
统计
经济
数学分析
风险管理
财务
古生物学
估计员
生物
作者
Ángel León,Trino‐Manuel Ñíguez
标识
DOI:10.1016/j.jempfin.2021.07.004
摘要
In this paper we study an extension of the Gram–Charlier (GC) density in Jondeau and Rockinger (2001) which consists of a Gallant and Nychka (1987) transformation to ensure positivity without parameter restrictions. We derive its parametric properties such as unimodality, cumulative distribution, higher-order moments, truncated moments, and the closed-form expressions for the expected shortfall (ES) and lower partial moments. We obtain the analytic kth order stationarity conditions for the unconditional moments of the TGARCH model under the transformed GC (TGC) density. In an empirical application to asset return series, we estimate the tail index; backtest the density, VaR and ES; and implement a comparative analysis based on Hansen's skewed-t distribution. Finally, we present extensions to time-varying conditional skewness and kurtosis, and a new class of mixture densities based on this TGC distribution.
科研通智能强力驱动
Strongly Powered by AbleSci AI